3.1026 \(\int \frac{e^{2 \tanh ^{-1}(a x)} (c-a^2 c x^2)}{x^3} \, dx\)

Optimal. Leaf size=23 \[ a^2 c \log (x)-\frac{2 a c}{x}-\frac{c}{2 x^2} \]

[Out]

-c/(2*x^2) - (2*a*c)/x + a^2*c*Log[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0521579, antiderivative size = 23, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {6150, 43} \[ a^2 c \log (x)-\frac{2 a c}{x}-\frac{c}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2))/x^3,x]

[Out]

-c/(2*x^2) - (2*a*c)/x + a^2*c*Log[x]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{e^{2 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )}{x^3} \, dx &=c \int \frac{(1+a x)^2}{x^3} \, dx\\ &=c \int \left (\frac{1}{x^3}+\frac{2 a}{x^2}+\frac{a^2}{x}\right ) \, dx\\ &=-\frac{c}{2 x^2}-\frac{2 a c}{x}+a^2 c \log (x)\\ \end{align*}

Mathematica [A]  time = 0.0166373, size = 22, normalized size = 0.96 \[ c \left (a^2 \log (x)-\frac{2 a}{x}-\frac{1}{2 x^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2))/x^3,x]

[Out]

c*(-1/(2*x^2) - (2*a)/x + a^2*Log[x])

________________________________________________________________________________________

Maple [A]  time = 0.032, size = 22, normalized size = 1. \begin{align*} -{\frac{c}{2\,{x}^{2}}}-2\,{\frac{ac}{x}}+{a}^{2}c\ln \left ( x \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)/x^3,x)

[Out]

-1/2*c/x^2-2*a*c/x+a^2*c*ln(x)

________________________________________________________________________________________

Maxima [A]  time = 0.952203, size = 27, normalized size = 1.17 \begin{align*} a^{2} c \log \left (x\right ) - \frac{4 \, a c x + c}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)/x^3,x, algorithm="maxima")

[Out]

a^2*c*log(x) - 1/2*(4*a*c*x + c)/x^2

________________________________________________________________________________________

Fricas [A]  time = 1.71111, size = 59, normalized size = 2.57 \begin{align*} \frac{2 \, a^{2} c x^{2} \log \left (x\right ) - 4 \, a c x - c}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)/x^3,x, algorithm="fricas")

[Out]

1/2*(2*a^2*c*x^2*log(x) - 4*a*c*x - c)/x^2

________________________________________________________________________________________

Sympy [A]  time = 0.321967, size = 20, normalized size = 0.87 \begin{align*} a^{2} c \log{\left (x \right )} - \frac{4 a c x + c}{2 x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)/x**3,x)

[Out]

a**2*c*log(x) - (4*a*c*x + c)/(2*x**2)

________________________________________________________________________________________

Giac [A]  time = 1.13781, size = 28, normalized size = 1.22 \begin{align*} a^{2} c \log \left ({\left | x \right |}\right ) - \frac{4 \, a c x + c}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)/x^3,x, algorithm="giac")

[Out]

a^2*c*log(abs(x)) - 1/2*(4*a*c*x + c)/x^2