3.101 \(\int e^{-\frac{3}{2} \tanh ^{-1}(a x)} x^3 \, dx\)

Optimal. Leaf size=290 \[ -\frac{x^2 (1-a x)^{7/4} \sqrt [4]{a x+1}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{a x+1}}{32 a^4}-\frac{41 (1-a x)^{3/4} \sqrt [4]{a x+1}}{64 a^4}+\frac{123 \log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{128 \sqrt{2} a^4}-\frac{123 \log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{128 \sqrt{2} a^4}-\frac{123 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{64 \sqrt{2} a^4}+\frac{123 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{64 \sqrt{2} a^4} \]

[Out]

(-41*(1 - a*x)^(3/4)*(1 + a*x)^(1/4))/(64*a^4) - (x^2*(1 - a*x)^(7/4)*(1 + a*x)^(1/4))/(4*a^2) - ((11 - 4*a*x)
*(1 - a*x)^(7/4)*(1 + a*x)^(1/4))/(32*a^4) - (123*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(64*S
qrt[2]*a^4) + (123*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(64*Sqrt[2]*a^4) + (123*Log[1 + Sqrt
[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(128*Sqrt[2]*a^4) - (123*Log[1 + Sqrt[1
- a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(128*Sqrt[2]*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.20771, antiderivative size = 290, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.857, Rules used = {6126, 100, 147, 50, 63, 331, 297, 1162, 617, 204, 1165, 628} \[ -\frac{x^2 (1-a x)^{7/4} \sqrt [4]{a x+1}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{a x+1}}{32 a^4}-\frac{41 (1-a x)^{3/4} \sqrt [4]{a x+1}}{64 a^4}+\frac{123 \log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{128 \sqrt{2} a^4}-\frac{123 \log \left (\frac{\sqrt{1-a x}}{\sqrt{a x+1}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{128 \sqrt{2} a^4}-\frac{123 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}\right )}{64 \sqrt{2} a^4}+\frac{123 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{a x+1}}+1\right )}{64 \sqrt{2} a^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3/E^((3*ArcTanh[a*x])/2),x]

[Out]

(-41*(1 - a*x)^(3/4)*(1 + a*x)^(1/4))/(64*a^4) - (x^2*(1 - a*x)^(7/4)*(1 + a*x)^(1/4))/(4*a^2) - ((11 - 4*a*x)
*(1 - a*x)^(7/4)*(1 + a*x)^(1/4))/(32*a^4) - (123*ArcTan[1 - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(64*S
qrt[2]*a^4) + (123*ArcTan[1 + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(64*Sqrt[2]*a^4) + (123*Log[1 + Sqrt
[1 - a*x]/Sqrt[1 + a*x] - (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(128*Sqrt[2]*a^4) - (123*Log[1 + Sqrt[1
- a*x]/Sqrt[1 + a*x] + (Sqrt[2]*(1 - a*x)^(1/4))/(1 + a*x)^(1/4)])/(128*Sqrt[2]*a^4)

Rule 6126

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[(x^m*(1 + a*x)^(n/2))/(1 - a*x)^(n/2), x] /; Fre
eQ[{a, m, n}, x] &&  !IntegerQ[(n - 1)/2]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int e^{-\frac{3}{2} \tanh ^{-1}(a x)} x^3 \, dx &=\int \frac{x^3 (1-a x)^{3/4}}{(1+a x)^{3/4}} \, dx\\ &=-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{\int \frac{x (1-a x)^{3/4} \left (-2+\frac{3 a x}{2}\right )}{(1+a x)^{3/4}} \, dx}{4 a^2}\\ &=-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}-\frac{41 \int \frac{(1-a x)^{3/4}}{(1+a x)^{3/4}} \, dx}{64 a^3}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}-\frac{123 \int \frac{1}{\sqrt [4]{1-a x} (1+a x)^{3/4}} \, dx}{128 a^3}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{x^2}{\left (2-x^4\right )^{3/4}} \, dx,x,\sqrt [4]{1-a x}\right )}{32 a^4}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{32 a^4}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}-\frac{123 \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 a^4}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}+\frac{123 \log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}-\frac{123 \log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}+\frac{123 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 \sqrt{2} a^4}-\frac{123 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 \sqrt{2} a^4}\\ &=-\frac{41 (1-a x)^{3/4} \sqrt [4]{1+a x}}{64 a^4}-\frac{x^2 (1-a x)^{7/4} \sqrt [4]{1+a x}}{4 a^2}-\frac{(11-4 a x) (1-a x)^{7/4} \sqrt [4]{1+a x}}{32 a^4}-\frac{123 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 \sqrt{2} a^4}+\frac{123 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{64 \sqrt{2} a^4}+\frac{123 \log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}-\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}-\frac{123 \log \left (1+\frac{\sqrt{1-a x}}{\sqrt{1+a x}}+\frac{\sqrt{2} \sqrt [4]{1-a x}}{\sqrt [4]{1+a x}}\right )}{128 \sqrt{2} a^4}\\ \end{align*}

Mathematica [C]  time = 0.103745, size = 116, normalized size = 0.4 \[ \frac{(1-a x)^{7/4} \left (12 \sqrt [4]{2} \text{Hypergeometric2F1}\left (-\frac{5}{4},\frac{7}{4},\frac{11}{4},\frac{1}{2} (1-a x)\right )-20 \sqrt [4]{2} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{7}{4},\frac{11}{4},\frac{1}{2} (1-a x)\right )+7 \sqrt [4]{2} \text{Hypergeometric2F1}\left (\frac{3}{4},\frac{7}{4},\frac{11}{4},\frac{1}{2} (1-a x)\right )-7 a^2 x^2 \sqrt [4]{a x+1}\right )}{28 a^4} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/E^((3*ArcTanh[a*x])/2),x]

[Out]

((1 - a*x)^(7/4)*(-7*a^2*x^2*(1 + a*x)^(1/4) + 12*2^(1/4)*Hypergeometric2F1[-5/4, 7/4, 11/4, (1 - a*x)/2] - 20
*2^(1/4)*Hypergeometric2F1[-1/4, 7/4, 11/4, (1 - a*x)/2] + 7*2^(1/4)*Hypergeometric2F1[3/4, 7/4, 11/4, (1 - a*
x)/2]))/(28*a^4)

________________________________________________________________________________________

Maple [F]  time = 0.107, size = 0, normalized size = 0. \begin{align*} \int{{x}^{3} \left ({(ax+1){\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}}} \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2),x)

[Out]

int(x^3/((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2),x, algorithm="maxima")

[Out]

integrate(x^3/((a*x + 1)/sqrt(-a^2*x^2 + 1))^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.95388, size = 1388, normalized size = 4.79 \begin{align*} \frac{492 \, \sqrt{2} a^{4} \frac{1}{a^{16}}^{\frac{1}{4}} \arctan \left (\sqrt{2} a^{12} \sqrt{\frac{\sqrt{2}{\left (a^{5} x - a^{4}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{1}{4}} +{\left (a^{9} x - a^{8}\right )} \sqrt{\frac{1}{a^{16}}} - \sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{3}{4}} - \sqrt{2} a^{12} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{3}{4}} - 1\right ) + 492 \, \sqrt{2} a^{4} \frac{1}{a^{16}}^{\frac{1}{4}} \arctan \left (\sqrt{2} a^{12} \sqrt{-\frac{\sqrt{2}{\left (a^{5} x - a^{4}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{1}{4}} -{\left (a^{9} x - a^{8}\right )} \sqrt{\frac{1}{a^{16}}} + \sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{3}{4}} - \sqrt{2} a^{12} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{3}{4}} + 1\right ) - 123 \, \sqrt{2} a^{4} \frac{1}{a^{16}}^{\frac{1}{4}} \log \left (\frac{\sqrt{2}{\left (a^{5} x - a^{4}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{1}{4}} +{\left (a^{9} x - a^{8}\right )} \sqrt{\frac{1}{a^{16}}} - \sqrt{-a^{2} x^{2} + 1}}{a x - 1}\right ) + 123 \, \sqrt{2} a^{4} \frac{1}{a^{16}}^{\frac{1}{4}} \log \left (-\frac{\sqrt{2}{\left (a^{5} x - a^{4}\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}} \frac{1}{a^{16}}^{\frac{1}{4}} -{\left (a^{9} x - a^{8}\right )} \sqrt{\frac{1}{a^{16}}} + \sqrt{-a^{2} x^{2} + 1}}{a x - 1}\right ) - 4 \,{\left (16 \, a^{4} x^{4} - 40 \, a^{3} x^{3} + 54 \, a^{2} x^{2} - 93 \, a x + 63\right )} \sqrt{-\frac{\sqrt{-a^{2} x^{2} + 1}}{a x - 1}}}{256 \, a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2),x, algorithm="fricas")

[Out]

1/256*(492*sqrt(2)*a^4*(a^(-16))^(1/4)*arctan(sqrt(2)*a^12*sqrt((sqrt(2)*(a^5*x - a^4)*sqrt(-sqrt(-a^2*x^2 + 1
)/(a*x - 1))*(a^(-16))^(1/4) + (a^9*x - a^8)*sqrt(a^(-16)) - sqrt(-a^2*x^2 + 1))/(a*x - 1))*(a^(-16))^(3/4) -
sqrt(2)*a^12*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-16))^(3/4) - 1) + 492*sqrt(2)*a^4*(a^(-16))^(1/4)*arctan
(sqrt(2)*a^12*sqrt(-(sqrt(2)*(a^5*x - a^4)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-16))^(1/4) - (a^9*x - a^8)
*sqrt(a^(-16)) + sqrt(-a^2*x^2 + 1))/(a*x - 1))*(a^(-16))^(3/4) - sqrt(2)*a^12*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x -
 1))*(a^(-16))^(3/4) + 1) - 123*sqrt(2)*a^4*(a^(-16))^(1/4)*log((sqrt(2)*(a^5*x - a^4)*sqrt(-sqrt(-a^2*x^2 + 1
)/(a*x - 1))*(a^(-16))^(1/4) + (a^9*x - a^8)*sqrt(a^(-16)) - sqrt(-a^2*x^2 + 1))/(a*x - 1)) + 123*sqrt(2)*a^4*
(a^(-16))^(1/4)*log(-(sqrt(2)*(a^5*x - a^4)*sqrt(-sqrt(-a^2*x^2 + 1)/(a*x - 1))*(a^(-16))^(1/4) - (a^9*x - a^8
)*sqrt(a^(-16)) + sqrt(-a^2*x^2 + 1))/(a*x - 1)) - 4*(16*a^4*x^4 - 40*a^3*x^3 + 54*a^2*x^2 - 93*a*x + 63)*sqrt
(-sqrt(-a^2*x^2 + 1)/(a*x - 1)))/a^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\left (\frac{a x + 1}{\sqrt{- a^{2} x^{2} + 1}}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/((a*x+1)/(-a**2*x**2+1)**(1/2))**(3/2),x)

[Out]

Integral(x**3/((a*x + 1)/sqrt(-a**2*x**2 + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\left (\frac{a x + 1}{\sqrt{-a^{2} x^{2} + 1}}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/((a*x+1)/(-a^2*x^2+1)^(1/2))^(3/2),x, algorithm="giac")

[Out]

integrate(x^3/((a*x + 1)/sqrt(-a^2*x^2 + 1))^(3/2), x)