3.1002 \(\int \frac{e^{\tanh ^{-1}(a x)} x^m}{(c-a^2 c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=134 \[ \frac{\sqrt{1-a^2 x^2} x^{m+1} \text{Hypergeometric2F1}\left (2,\frac{m+1}{2},\frac{m+3}{2},a^2 x^2\right )}{c (m+1) \sqrt{c-a^2 c x^2}}+\frac{a \sqrt{1-a^2 x^2} x^{m+2} \text{Hypergeometric2F1}\left (2,\frac{m+2}{2},\frac{m+4}{2},a^2 x^2\right )}{c (m+2) \sqrt{c-a^2 c x^2}} \]

[Out]

(x^(1 + m)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(c*(1 + m)*Sqrt[c - a^2*c*x^
2]) + (a*x^(2 + m)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[2, (2 + m)/2, (4 + m)/2, a^2*x^2])/(c*(2 + m)*Sqrt[c -
a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.21553, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {6153, 6150, 82, 73, 364} \[ \frac{\sqrt{1-a^2 x^2} x^{m+1} \, _2F_1\left (2,\frac{m+1}{2};\frac{m+3}{2};a^2 x^2\right )}{c (m+1) \sqrt{c-a^2 c x^2}}+\frac{a \sqrt{1-a^2 x^2} x^{m+2} \, _2F_1\left (2,\frac{m+2}{2};\frac{m+4}{2};a^2 x^2\right )}{c (m+2) \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(E^ArcTanh[a*x]*x^m)/(c - a^2*c*x^2)^(3/2),x]

[Out]

(x^(1 + m)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, a^2*x^2])/(c*(1 + m)*Sqrt[c - a^2*c*x^
2]) + (a*x^(2 + m)*Sqrt[1 - a^2*x^2]*Hypergeometric2F1[2, (2 + m)/2, (4 + m)/2, a^2*x^2])/(c*(2 + m)*Sqrt[c -
a^2*c*x^2])

Rule 6153

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c +
d*x^2)^FracPart[p])/(1 - a^2*x^2)^FracPart[p], Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a,
 c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[n/2]

Rule 6150

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^p, Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p
] || GtQ[c, 0])

Rule 82

Int[((f_.)*(x_))^(p_.)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Dist[a, Int[(a + b*
x)^n*(c + d*x)^n*(f*x)^p, x], x] + Dist[b/f, Int[(a + b*x)^n*(c + d*x)^n*(f*x)^(p + 1), x], x] /; FreeQ[{a, b,
 c, d, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n - 1, 0] &&  !RationalQ[p] &&  !IGtQ[m, 0] && NeQ[m +
n + p + 2, 0]

Rule 73

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[(a*c + b*
d*x^2)^m*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && Integer
Q[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{e^{\tanh ^{-1}(a x)} x^m}{\left (c-a^2 c x^2\right )^{3/2}} \, dx &=\frac{\sqrt{1-a^2 x^2} \int \frac{e^{\tanh ^{-1}(a x)} x^m}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{x^m}{(1-a x)^2 (1+a x)} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{x^m}{(1-a x)^2 (1+a x)^2} \, dx}{c \sqrt{c-a^2 c x^2}}+\frac{\left (a \sqrt{1-a^2 x^2}\right ) \int \frac{x^{1+m}}{(1-a x)^2 (1+a x)^2} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{\sqrt{1-a^2 x^2} \int \frac{x^m}{\left (1-a^2 x^2\right )^2} \, dx}{c \sqrt{c-a^2 c x^2}}+\frac{\left (a \sqrt{1-a^2 x^2}\right ) \int \frac{x^{1+m}}{\left (1-a^2 x^2\right )^2} \, dx}{c \sqrt{c-a^2 c x^2}}\\ &=\frac{x^{1+m} \sqrt{1-a^2 x^2} \, _2F_1\left (2,\frac{1+m}{2};\frac{3+m}{2};a^2 x^2\right )}{c (1+m) \sqrt{c-a^2 c x^2}}+\frac{a x^{2+m} \sqrt{1-a^2 x^2} \, _2F_1\left (2,\frac{2+m}{2};\frac{4+m}{2};a^2 x^2\right )}{c (2+m) \sqrt{c-a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0416802, size = 107, normalized size = 0.8 \[ \frac{\sqrt{1-a^2 x^2} \left (\frac{x^{m+1} \text{Hypergeometric2F1}\left (2,\frac{m+1}{2},\frac{m+1}{2}+1,a^2 x^2\right )}{m+1}+\frac{a x^{m+2} \text{Hypergeometric2F1}\left (2,\frac{m+2}{2},\frac{m+2}{2}+1,a^2 x^2\right )}{m+2}\right )}{c \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^ArcTanh[a*x]*x^m)/(c - a^2*c*x^2)^(3/2),x]

[Out]

(Sqrt[1 - a^2*x^2]*((x^(1 + m)*Hypergeometric2F1[2, (1 + m)/2, 1 + (1 + m)/2, a^2*x^2])/(1 + m) + (a*x^(2 + m)
*Hypergeometric2F1[2, (2 + m)/2, 1 + (2 + m)/2, a^2*x^2])/(2 + m)))/(c*Sqrt[c - a^2*c*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.328, size = 0, normalized size = 0. \begin{align*} \int{ \left ( ax+1 \right ){x}^{m}{\frac{1}{\sqrt{-{a}^{2}{x}^{2}+1}}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m/(-a^2*c*x^2+c)^(3/2),x)

[Out]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m/(-a^2*c*x^2+c)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )} x^{m}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{3}{2}} \sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m/(-a^2*c*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)*x^m/((-a^2*c*x^2 + c)^(3/2)*sqrt(-a^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-a^{2} c x^{2} + c} \sqrt{-a^{2} x^{2} + 1} x^{m}}{a^{5} c^{2} x^{5} - a^{4} c^{2} x^{4} - 2 \, a^{3} c^{2} x^{3} + 2 \, a^{2} c^{2} x^{2} + a c^{2} x - c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m/(-a^2*c*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*c*x^2 + c)*sqrt(-a^2*x^2 + 1)*x^m/(a^5*c^2*x^5 - a^4*c^2*x^4 - 2*a^3*c^2*x^3 + 2*a^2*c^2*x
^2 + a*c^2*x - c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{m} \left (a x + 1\right )}{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )} \left (- c \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*x**m/(-a**2*c*x**2+c)**(3/2),x)

[Out]

Integral(x**m*(a*x + 1)/(sqrt(-(a*x - 1)*(a*x + 1))*(-c*(a*x - 1)*(a*x + 1))**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )} x^{m}}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{3}{2}} \sqrt{-a^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*x^m/(-a^2*c*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*x + 1)*x^m/((-a^2*c*x^2 + c)^(3/2)*sqrt(-a^2*x^2 + 1)), x)