3.68 \(\int \frac{(f+g x) (a+b \cosh ^{-1}(c x))}{\sqrt{d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=136 \[ \frac{f \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt{d-c^2 d x^2}}-\frac{g (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}-\frac{b g x \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{d-c^2 d x^2}} \]

[Out]

-((b*g*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - (g*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))
/(c^2*Sqrt[d - c^2*d*x^2]) + (f*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(2*b*c*Sqrt[d - c^2*d*x^2
])

________________________________________________________________________________________

Rubi [A]  time = 0.472078, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {5836, 5822, 5676, 5718, 8} \[ \frac{f \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt{d-c^2 d x^2}}-\frac{g (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}-\frac{b g x \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x)*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-((b*g*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - (g*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))
/(c^2*Sqrt[d - c^2*d*x^2]) + (f*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^2)/(2*b*c*Sqrt[d - c^2*d*x^2
])

Rule 5836

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Dist[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f + g*x
)^m*(1 + c*x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d
 + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2]

Rule 5822

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, (f + g*x
)^m, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m,
0] && IntegerQ[p + 1/2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p, -1]) || GtQ[p, 0] |
| EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))

Rule 5676

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[-(d1*d2)]*(n + 1)), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n},
x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[d1, 0] && LtQ[d2, 0] && NeQ[n, -1]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{(f+g x) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{d-c^2 d x^2}} \, dx &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{(f+g x) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{d-c^2 d x^2}}\\ &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \left (\frac{f \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}}+\frac{g x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}}\right ) \, dx}{\sqrt{d-c^2 d x^2}}\\ &=\frac{\left (f \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{a+b \cosh ^{-1}(c x)}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{d-c^2 d x^2}}+\frac{\left (g \sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{d-c^2 d x^2}}\\ &=-\frac{g (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}+\frac{f \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt{d-c^2 d x^2}}-\frac{\left (b g \sqrt{-1+c x} \sqrt{1+c x}\right ) \int 1 \, dx}{c \sqrt{d-c^2 d x^2}}\\ &=-\frac{b g x \sqrt{-1+c x} \sqrt{1+c x}}{c \sqrt{d-c^2 d x^2}}-\frac{g (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}+\frac{f \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^2}{2 b c \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.667384, size = 172, normalized size = 1.26 \[ \frac{-\frac{2 a c f \tan ^{-1}\left (\frac{c x \sqrt{d-c^2 d x^2}}{\sqrt{d} \left (c^2 x^2-1\right )}\right )}{\sqrt{d}}-\frac{2 a g \sqrt{d-c^2 d x^2}}{d}+\frac{b c f \sqrt{\frac{c x-1}{c x+1}} (c x+1) \cosh ^{-1}(c x)^2}{\sqrt{d-c^2 d x^2}}+\frac{2 b g \sqrt{d-c^2 d x^2} \left (\frac{c x}{\sqrt{c x-1} \sqrt{c x+1}}-\cosh ^{-1}(c x)\right )}{d}}{2 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x)*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

((-2*a*g*Sqrt[d - c^2*d*x^2])/d + (2*b*g*Sqrt[d - c^2*d*x^2]*((c*x)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - ArcCosh[c
*x]))/d + (b*c*f*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*ArcCosh[c*x]^2)/Sqrt[d - c^2*d*x^2] - (2*a*c*f*ArcTan[(c
*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))])/Sqrt[d])/(2*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.225, size = 239, normalized size = 1.8 \begin{align*} -{\frac{ag}{{c}^{2}d}\sqrt{-{c}^{2}d{x}^{2}+d}}+{af\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}-{\frac{bf \left ({\rm arccosh} \left (cx\right ) \right ) ^{2}}{2\,cd \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}-{\frac{bg{\rm arccosh} \left (cx\right ){x}^{2}}{d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{bgx}{cd \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{cx-1}\sqrt{cx+1}}+{\frac{bg{\rm arccosh} \left (cx\right )}{{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a*g/c^2/d*(-c^2*d*x^2+d)^(1/2)+a*f/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/2*b*(-d*(c^2*
x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d/c/(c^2*x^2-1)*f*arccosh(c*x)^2-b*(-d*(c^2*x^2-1))^(1/2)*g/d/(c^2*x
^2-1)*arccosh(c*x)*x^2+b*(-d*(c^2*x^2-1))^(1/2)*g/c/d/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x+b*(-d*(c^2*x^2
-1))^(1/2)*g/c^2/d/(c^2*x^2-1)*arccosh(c*x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c^{2} d x^{2} + d}{\left (a g x + a f +{\left (b g x + b f\right )} \operatorname{arcosh}\left (c x\right )\right )}}{c^{2} d x^{2} - d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(a*g*x + a*f + (b*g*x + b*f)*arccosh(c*x))/(c^2*d*x^2 - d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{acosh}{\left (c x \right )}\right ) \left (f + g x\right )}{\sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*acosh(c*x))*(f + g*x)/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (g x + f\right )}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}}{\sqrt{-c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((g*x + f)*(b*arccosh(c*x) + a)/sqrt(-c^2*d*x^2 + d), x)