3.260 \(\int \frac{1}{(a+b \cosh ^{-1}(1+d x^2))^{7/2}} \, dx\)

Optimal. Leaf size=301 \[ -\frac{\sqrt{\frac{\pi }{2}} \left (\sinh \left (\frac{a}{2 b}\right )+\cosh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )}{15 b^{7/2} d x}+\frac{\sqrt{\frac{\pi }{2}} \left (\cosh \left (\frac{a}{2 b}\right )-\sinh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )}{15 b^{7/2} d x}-\frac{x}{15 b^2 \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{3/2}}-\frac{\sqrt{d x^2} \sqrt{d x^2+2}}{15 b^3 d x \sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}-\frac{d x^4+2 x^2}{5 b x \sqrt{d x^2} \sqrt{d x^2+2} \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{5/2}} \]

[Out]

-(2*x^2 + d*x^4)/(5*b*x*Sqrt[d*x^2]*Sqrt[2 + d*x^2]*(a + b*ArcCosh[1 + d*x^2])^(5/2)) - x/(15*b^2*(a + b*ArcCo
sh[1 + d*x^2])^(3/2)) - (Sqrt[d*x^2]*Sqrt[2 + d*x^2])/(15*b^3*d*x*Sqrt[a + b*ArcCosh[1 + d*x^2]]) + (Sqrt[Pi/2
]*Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/(Sqrt[2]*Sqrt[b])]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^
2]/2])/(15*b^(7/2)*d*x) - (Sqrt[Pi/2]*Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/(Sqrt[2]*Sqrt[b])]*(Cosh[a/(2*b)] + S
inh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^2]/2])/(15*b^(7/2)*d*x)

________________________________________________________________________________________

Rubi [A]  time = 0.0774556, antiderivative size = 301, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {5889, 5885} \[ -\frac{\sqrt{\frac{\pi }{2}} \left (\sinh \left (\frac{a}{2 b}\right )+\cosh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )}{15 b^{7/2} d x}+\frac{\sqrt{\frac{\pi }{2}} \left (\cosh \left (\frac{a}{2 b}\right )-\sinh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )}{15 b^{7/2} d x}-\frac{x}{15 b^2 \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{3/2}}-\frac{\sqrt{d x^2} \sqrt{d x^2+2}}{15 b^3 d x \sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}-\frac{d x^4+2 x^2}{5 b x \sqrt{d x^2} \sqrt{d x^2+2} \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[1 + d*x^2])^(-7/2),x]

[Out]

-(2*x^2 + d*x^4)/(5*b*x*Sqrt[d*x^2]*Sqrt[2 + d*x^2]*(a + b*ArcCosh[1 + d*x^2])^(5/2)) - x/(15*b^2*(a + b*ArcCo
sh[1 + d*x^2])^(3/2)) - (Sqrt[d*x^2]*Sqrt[2 + d*x^2])/(15*b^3*d*x*Sqrt[a + b*ArcCosh[1 + d*x^2]]) + (Sqrt[Pi/2
]*Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/(Sqrt[2]*Sqrt[b])]*(Cosh[a/(2*b)] - Sinh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^
2]/2])/(15*b^(7/2)*d*x) - (Sqrt[Pi/2]*Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/(Sqrt[2]*Sqrt[b])]*(Cosh[a/(2*b)] + S
inh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^2]/2])/(15*b^(7/2)*d*x)

Rule 5889

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> -Simp[(x*(a + b*ArcCosh[c + d*x^2])^(n + 2
))/(4*b^2*(n + 1)*(n + 2)), x] + (Dist[1/(4*b^2*(n + 1)*(n + 2)), Int[(a + b*ArcCosh[c + d*x^2])^(n + 2), x],
x] + Simp[((2*c*x^2 + d*x^4)*(a + b*ArcCosh[c + d*x^2])^(n + 1))/(2*b*(n + 1)*x*Sqrt[-1 + c + d*x^2]*Sqrt[1 +
c + d*x^2]), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2]

Rule 5885

Int[((a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> -Simp[(Sqrt[d*x^2]*Sqrt[2 + d*x^2])/(b*d*x*
Sqrt[a + b*ArcCosh[1 + d*x^2]]), x] + (-Simp[(Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^
2]/2]*Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]])/(b^(3/2)*d*x), x] + Simp[(Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sin
h[a/(2*b)])*Sinh[ArcCosh[1 + d*x^2]/2]*Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]])/(b^(3/2)*d*x), x]) /; F
reeQ[{a, b, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{7/2}} \, dx &=-\frac{2 x^2+d x^4}{5 b x \sqrt{d x^2} \sqrt{2+d x^2} \left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{5/2}}-\frac{x}{15 b^2 \left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{3/2}}+\frac{\int \frac{1}{\left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{3/2}} \, dx}{15 b^2}\\ &=-\frac{2 x^2+d x^4}{5 b x \sqrt{d x^2} \sqrt{2+d x^2} \left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{5/2}}-\frac{x}{15 b^2 \left (a+b \cosh ^{-1}\left (1+d x^2\right )\right )^{3/2}}-\frac{\sqrt{d x^2} \sqrt{2+d x^2}}{15 b^3 d x \sqrt{a+b \cosh ^{-1}\left (1+d x^2\right )}}+\frac{\sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (1+d x^2\right )}}{\sqrt{2} \sqrt{b}}\right ) \left (\cosh \left (\frac{a}{2 b}\right )-\sinh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (1+d x^2\right )\right )}{15 b^{7/2} d x}-\frac{\sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (1+d x^2\right )}}{\sqrt{2} \sqrt{b}}\right ) \left (\cosh \left (\frac{a}{2 b}\right )+\sinh \left (\frac{a}{2 b}\right )\right ) \sinh \left (\frac{1}{2} \cosh ^{-1}\left (1+d x^2\right )\right )}{15 b^{7/2} d x}\\ \end{align*}

Mathematica [A]  time = 1.22105, size = 291, normalized size = 0.97 \[ -\frac{x \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \left (4 \sqrt{b} \left (\cosh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \left (\left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^2+3 b^2\right )+b \sinh \left (\frac{1}{2} \cosh ^{-1}\left (d x^2+1\right )\right ) \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )\right )+\sqrt{2 \pi } \left (\sinh \left (\frac{a}{2 b}\right )+\cosh \left (\frac{a}{2 b}\right )\right ) \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{5/2} \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )+\sqrt{2 \pi } \left (\sinh \left (\frac{a}{2 b}\right )-\cosh \left (\frac{a}{2 b}\right )\right ) \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{5/2} \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}\left (d x^2+1\right )}}{\sqrt{2} \sqrt{b}}\right )\right )}{30 b^{7/2} \sqrt{d x^2} \sqrt{\frac{d x^2}{d x^2+2}} \sqrt{d x^2+2} \left (a+b \cosh ^{-1}\left (d x^2+1\right )\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[1 + d*x^2])^(-7/2),x]

[Out]

-(x*Sinh[ArcCosh[1 + d*x^2]/2]*(Sqrt[2*Pi]*(a + b*ArcCosh[1 + d*x^2])^(5/2)*Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]
]/(Sqrt[2]*Sqrt[b])]*(-Cosh[a/(2*b)] + Sinh[a/(2*b)]) + Sqrt[2*Pi]*(a + b*ArcCosh[1 + d*x^2])^(5/2)*Erf[Sqrt[a
 + b*ArcCosh[1 + d*x^2]]/(Sqrt[2]*Sqrt[b])]*(Cosh[a/(2*b)] + Sinh[a/(2*b)]) + 4*Sqrt[b]*((3*b^2 + (a + b*ArcCo
sh[1 + d*x^2])^2)*Cosh[ArcCosh[1 + d*x^2]/2] + b*(a + b*ArcCosh[1 + d*x^2])*Sinh[ArcCosh[1 + d*x^2]/2])))/(30*
b^(7/2)*Sqrt[d*x^2]*Sqrt[(d*x^2)/(2 + d*x^2)]*Sqrt[2 + d*x^2]*(a + b*ArcCosh[1 + d*x^2])^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.063, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b{\rm arccosh} \left (d{x}^{2}+1\right ) \right ) ^{-{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arccosh(d*x^2+1))^(7/2),x)

[Out]

int(1/(a+b*arccosh(d*x^2+1))^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arcosh}\left (d x^{2} + 1\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x^2+1))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(d*x^2 + 1) + a)^(-7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x^2+1))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*acosh(d*x**2+1))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x^2+1))^(7/2),x, algorithm="giac")

[Out]

Exception raised: TypeError