3.184 \(\int \frac{1}{(a+b \cosh ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=128 \[ \frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}-\frac{2 \sqrt{c+d x-1} \sqrt{c+d x+1}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}} \]

[Out]

(-2*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(b*d*Sqrt[a + b*ArcCosh[c + d*x]]) + (E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a +
b*ArcCosh[c + d*x]]/Sqrt[b]])/(b^(3/2)*d) + (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]])/(b^(3/2)*d*E
^(a/b))

________________________________________________________________________________________

Rubi [A]  time = 0.354413, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5864, 5656, 5781, 3307, 2180, 2204, 2205} \[ \frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}-\frac{2 \sqrt{c+d x-1} \sqrt{c+d x+1}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c + d*x])^(-3/2),x]

[Out]

(-2*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(b*d*Sqrt[a + b*ArcCosh[c + d*x]]) + (E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a +
b*ArcCosh[c + d*x]]/Sqrt[b]])/(b^(3/2)*d) + (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]])/(b^(3/2)*d*E
^(a/b))

Rule 5864

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcCosh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 5656

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c
*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcCosh[c*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqr
t[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \cosh ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (a+b \cosh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 \sqrt{-1+c+d x} \sqrt{1+c+d x}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{x}{\sqrt{-1+x} \sqrt{1+x} \sqrt{a+b \cosh ^{-1}(x)}} \, dx,x,c+d x\right )}{b d}\\ &=-\frac{2 \sqrt{-1+c+d x} \sqrt{1+c+d x}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{\cosh (x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 \sqrt{-1+c+d x} \sqrt{1+c+d x}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b d}+\frac{\operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 \sqrt{-1+c+d x} \sqrt{1+c+d x}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}}+\frac{2 \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c+d x)}\right )}{b^2 d}+\frac{2 \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c+d x)}\right )}{b^2 d}\\ &=-\frac{2 \sqrt{-1+c+d x} \sqrt{1+c+d x}}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}}+\frac{e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}+\frac{e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{b^{3/2} d}\\ \end{align*}

Mathematica [A]  time = 0.468769, size = 145, normalized size = 1.13 \[ \frac{e^{-\frac{a}{b}} \left (-e^{\frac{2 a}{b}} \sqrt{\frac{a}{b}+\cosh ^{-1}(c+d x)} \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\cosh ^{-1}(c+d x)\right )+\sqrt{-\frac{a+b \cosh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \cosh ^{-1}(c+d x)}{b}\right )-2 e^{a/b} \sqrt{\frac{c+d x-1}{c+d x+1}} (c+d x+1)\right )}{b d \sqrt{a+b \cosh ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c + d*x])^(-3/2),x]

[Out]

(-2*E^(a/b)*Sqrt[(-1 + c + d*x)/(1 + c + d*x)]*(1 + c + d*x) - E^((2*a)/b)*Sqrt[a/b + ArcCosh[c + d*x]]*Gamma[
1/2, a/b + ArcCosh[c + d*x]] + Sqrt[-((a + b*ArcCosh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcCosh[c + d*x])/b)])/
(b*d*E^(a/b)*Sqrt[a + b*ArcCosh[c + d*x]])

________________________________________________________________________________________

Maple [F]  time = 0.118, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b{\rm arccosh} \left (dx+c\right ) \right ) ^{-{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arccosh(d*x+c))^(3/2),x)

[Out]

int(1/(a+b*arccosh(d*x+c))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arcosh}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(d*x + c) + a)^(-3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \operatorname{acosh}{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*acosh(d*x+c))**(3/2),x)

[Out]

Integral((a + b*acosh(c + d*x))**(-3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(d*x+c))^(3/2),x, algorithm="giac")

[Out]

sage0*x