3.157 \(\int (c e+d e x) \sqrt{a+b \cosh ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=164 \[ -\frac{\sqrt{\frac{\pi }{2}} \sqrt{b} e e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{b} e e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d} \]

[Out]

-(e*Sqrt[a + b*ArcCosh[c + d*x]])/(4*d) + (e*(c + d*x)^2*Sqrt[a + b*ArcCosh[c + d*x]])/(2*d) - (Sqrt[b]*e*E^((
2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]])/(16*d) - (Sqrt[b]*e*Sqrt[Pi/2]*Erfi[(S
qrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]])/(16*d*E^((2*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.575408, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {5866, 12, 5664, 5781, 3312, 3307, 2180, 2204, 2205} \[ -\frac{\sqrt{\frac{\pi }{2}} \sqrt{b} e e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{\frac{\pi }{2}} \sqrt{b} e e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)*Sqrt[a + b*ArcCosh[c + d*x]],x]

[Out]

-(e*Sqrt[a + b*ArcCosh[c + d*x]])/(4*d) + (e*(c + d*x)^2*Sqrt[a + b*ArcCosh[c + d*x]])/(2*d) - (Sqrt[b]*e*E^((
2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]])/(16*d) - (Sqrt[b]*e*Sqrt[Pi/2]*Erfi[(S
qrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]])/(16*d*E^((2*a)/b))

Rule 5866

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5664

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*(a + b*ArcCosh[c*x])^n)/
(m + 1), x] - Dist[(b*c*n)/(m + 1), Int[(x^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]
), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int (c e+d e x) \sqrt{a+b \cosh ^{-1}(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int e x \sqrt{a+b \cosh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{e \operatorname{Subst}\left (\int x \sqrt{a+b \cosh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{(b e) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{-1+x} \sqrt{1+x} \sqrt{a+b \cosh ^{-1}(x)}} \, dx,x,c+d x\right )}{4 d}\\ &=\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{(b e) \operatorname{Subst}\left (\int \frac{\cosh ^2(x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{4 d}\\ &=\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{(b e) \operatorname{Subst}\left (\int \left (\frac{1}{2 \sqrt{a+b x}}+\frac{\cosh (2 x)}{2 \sqrt{a+b x}}\right ) \, dx,x,\cosh ^{-1}(c+d x)\right )}{4 d}\\ &=-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{(b e) \operatorname{Subst}\left (\int \frac{\cosh (2 x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{8 d}\\ &=-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{(b e) \operatorname{Subst}\left (\int \frac{e^{-2 x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{16 d}-\frac{(b e) \operatorname{Subst}\left (\int \frac{e^{2 x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c+d x)\right )}{16 d}\\ &=-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{e \operatorname{Subst}\left (\int e^{\frac{2 a}{b}-\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c+d x)}\right )}{8 d}-\frac{e \operatorname{Subst}\left (\int e^{-\frac{2 a}{b}+\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c+d x)}\right )}{8 d}\\ &=-\frac{e \sqrt{a+b \cosh ^{-1}(c+d x)}}{4 d}+\frac{e (c+d x)^2 \sqrt{a+b \cosh ^{-1}(c+d x)}}{2 d}-\frac{\sqrt{b} e e^{\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{b} e e^{-\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}\\ \end{align*}

Mathematica [B]  time = 2.3693, size = 437, normalized size = 2.66 \[ \frac{e \left (16 c e^{-\frac{a}{b}} \sqrt{a+b \cosh ^{-1}(c+d x)} \left (\frac{e^{\frac{2 a}{b}} \text{Gamma}\left (\frac{3}{2},\frac{a}{b}+\cosh ^{-1}(c+d x)\right )}{\sqrt{\frac{a}{b}+\cosh ^{-1}(c+d x)}}+\frac{\text{Gamma}\left (\frac{3}{2},-\frac{a+b \cosh ^{-1}(c+d x)}{b}\right )}{\sqrt{-\frac{a+b \cosh ^{-1}(c+d x)}{b}}}\right )+8 \sqrt{\pi } \sqrt{b} c \left (\sinh \left (\frac{a}{b}\right )+\cosh \left (\frac{a}{b}\right )\right ) \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )-\sqrt{2 \pi } \sqrt{b} \left (\sinh \left (\frac{2 a}{b}\right )+\cosh \left (\frac{2 a}{b}\right )\right ) \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )+8 \sqrt{\pi } \sqrt{b} c \cosh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )-\sqrt{2 \pi } \sqrt{b} \cosh \left (\frac{2 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )-8 \sqrt{\pi } \sqrt{b} c \sinh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )+\sqrt{2 \pi } \sqrt{b} \sinh \left (\frac{2 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \cosh ^{-1}(c+d x)}}{\sqrt{b}}\right )-32 c (c+d x) \sqrt{a+b \cosh ^{-1}(c+d x)}+8 \cosh \left (2 \cosh ^{-1}(c+d x)\right ) \sqrt{a+b \cosh ^{-1}(c+d x)}\right )}{32 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)*Sqrt[a + b*ArcCosh[c + d*x]],x]

[Out]

(e*(-32*c*(c + d*x)*Sqrt[a + b*ArcCosh[c + d*x]] + 8*Sqrt[a + b*ArcCosh[c + d*x]]*Cosh[2*ArcCosh[c + d*x]] + 8
*Sqrt[b]*c*Sqrt[Pi]*Cosh[a/b]*Erfi[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]] - Sqrt[b]*Sqrt[2*Pi]*Cosh[(2*a)/b]*Er
fi[(Sqrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]] + (16*c*Sqrt[a + b*ArcCosh[c + d*x]]*((E^((2*a)/b)*Gamma[3/
2, a/b + ArcCosh[c + d*x]])/Sqrt[a/b + ArcCosh[c + d*x]] + Gamma[3/2, -((a + b*ArcCosh[c + d*x])/b)]/Sqrt[-((a
 + b*ArcCosh[c + d*x])/b)]))/E^(a/b) - 8*Sqrt[b]*c*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]]*Sinh[a/
b] + 8*Sqrt[b]*c*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c + d*x]]/Sqrt[b]]*(Cosh[a/b] + Sinh[a/b]) + Sqrt[b]*Sqrt[2*P
i]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcCosh[c + d*x]])/Sqrt[b]]*Sinh[(2*a)/b] - Sqrt[b]*Sqrt[2*Pi]*Erf[(Sqrt[2]*Sqrt[a
 + b*ArcCosh[c + d*x]])/Sqrt[b]]*(Cosh[(2*a)/b] + Sinh[(2*a)/b])))/(32*d)

________________________________________________________________________________________

Maple [F]  time = 0.128, size = 0, normalized size = 0. \begin{align*} \int \left ( dex+ce \right ) \sqrt{a+b{\rm arccosh} \left (dx+c\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)*(a+b*arccosh(d*x+c))^(1/2),x)

[Out]

int((d*e*x+c*e)*(a+b*arccosh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (d e x + c e\right )} \sqrt{b \operatorname{arcosh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arccosh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)*sqrt(b*arccosh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arccosh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e \left (\int c \sqrt{a + b \operatorname{acosh}{\left (c + d x \right )}}\, dx + \int d x \sqrt{a + b \operatorname{acosh}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*acosh(d*x+c))**(1/2),x)

[Out]

e*(Integral(c*sqrt(a + b*acosh(c + d*x)), x) + Integral(d*x*sqrt(a + b*acosh(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arccosh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sage0*x