3.121 \(\int \frac{(a+b \cosh ^{-1}(c+d x))^3}{(c e+d e x)^4} \, dx\)

Optimal. Leaf size=297 \[ -\frac{i b^2 \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4}+\frac{i b^2 \text{PolyLog}\left (2,i e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4}+\frac{i b^3 \text{PolyLog}\left (3,-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{i b^3 \text{PolyLog}\left (3,i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{c+d x-1} \sqrt{c+d x+1} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )^2}{d e^4}-\frac{b^3 \tan ^{-1}\left (\sqrt{c+d x-1} \sqrt{c+d x+1}\right )}{d e^4} \]

[Out]

(b^2*(a + b*ArcCosh[c + d*x]))/(d*e^4*(c + d*x)) + (b*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x]*(a + b*ArcCosh[c +
d*x])^2)/(2*d*e^4*(c + d*x)^2) - (a + b*ArcCosh[c + d*x])^3/(3*d*e^4*(c + d*x)^3) + (b*(a + b*ArcCosh[c + d*x]
)^2*ArcTan[E^ArcCosh[c + d*x]])/(d*e^4) - (b^3*ArcTan[Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x]])/(d*e^4) - (I*b^2*
(a + b*ArcCosh[c + d*x])*PolyLog[2, (-I)*E^ArcCosh[c + d*x]])/(d*e^4) + (I*b^2*(a + b*ArcCosh[c + d*x])*PolyLo
g[2, I*E^ArcCosh[c + d*x]])/(d*e^4) + (I*b^3*PolyLog[3, (-I)*E^ArcCosh[c + d*x]])/(d*e^4) - (I*b^3*PolyLog[3,
I*E^ArcCosh[c + d*x]])/(d*e^4)

________________________________________________________________________________________

Rubi [A]  time = 0.593879, antiderivative size = 297, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 11, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.478, Rules used = {5866, 12, 5662, 5748, 5761, 4180, 2531, 2282, 6589, 92, 203} \[ -\frac{i b^2 \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4}+\frac{i b^2 \text{PolyLog}\left (2,i e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4}+\frac{i b^3 \text{PolyLog}\left (3,-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{i b^3 \text{PolyLog}\left (3,i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{c+d x-1} \sqrt{c+d x+1} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right ) \left (a+b \cosh ^{-1}(c+d x)\right )^2}{d e^4}-\frac{b^3 \tan ^{-1}\left (\sqrt{c+d x-1} \sqrt{c+d x+1}\right )}{d e^4} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c + d*x])^3/(c*e + d*e*x)^4,x]

[Out]

(b^2*(a + b*ArcCosh[c + d*x]))/(d*e^4*(c + d*x)) + (b*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x]*(a + b*ArcCosh[c +
d*x])^2)/(2*d*e^4*(c + d*x)^2) - (a + b*ArcCosh[c + d*x])^3/(3*d*e^4*(c + d*x)^3) + (b*(a + b*ArcCosh[c + d*x]
)^2*ArcTan[E^ArcCosh[c + d*x]])/(d*e^4) - (b^3*ArcTan[Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x]])/(d*e^4) - (I*b^2*
(a + b*ArcCosh[c + d*x])*PolyLog[2, (-I)*E^ArcCosh[c + d*x]])/(d*e^4) + (I*b^2*(a + b*ArcCosh[c + d*x])*PolyLo
g[2, I*E^ArcCosh[c + d*x]])/(d*e^4) + (I*b^3*PolyLog[3, (-I)*E^ArcCosh[c + d*x]])/(d*e^4) - (I*b^3*PolyLog[3,
I*E^ArcCosh[c + d*x]])/(d*e^4)

Rule 5866

Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5662

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcC
osh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1))/(Sqr
t[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5748

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(d1*
d2*f*(m + 1)), x] + (Dist[(c^2*(m + 2*p + 3))/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a
+ b*ArcCosh[c*x])^n, x], x] + Dist[(b*c*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p
])/(f*(m + 1)*(1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p + 1/2)*(a + b
*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 +
c*d2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegerQ[m] && IntegerQ[p + 1/2]

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{(c e+d e x)^4} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \cosh ^{-1}(x)\right )^3}{e^4 x^4} \, dx,x,c+d x\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \cosh ^{-1}(x)\right )^3}{x^4} \, dx,x,c+d x\right )}{d e^4}\\ &=-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \operatorname{Subst}\left (\int \frac{\left (a+b \cosh ^{-1}(x)\right )^2}{\sqrt{-1+x} x^3 \sqrt{1+x}} \, dx,x,c+d x\right )}{d e^4}\\ &=\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \operatorname{Subst}\left (\int \frac{\left (a+b \cosh ^{-1}(x)\right )^2}{\sqrt{-1+x} x \sqrt{1+x}} \, dx,x,c+d x\right )}{2 d e^4}-\frac{b^2 \operatorname{Subst}\left (\int \frac{a+b \cosh ^{-1}(x)}{x^2} \, dx,x,c+d x\right )}{d e^4}\\ &=\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \operatorname{Subst}\left (\int (a+b x)^2 \text{sech}(x) \, dx,x,\cosh ^{-1}(c+d x)\right )}{2 d e^4}-\frac{b^3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{-1+x} x \sqrt{1+x}} \, dx,x,c+d x\right )}{d e^4}\\ &=\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \left (a+b \cosh ^{-1}(c+d x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{\left (i b^2\right ) \operatorname{Subst}\left (\int (a+b x) \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c+d x)\right )}{d e^4}+\frac{\left (i b^2\right ) \operatorname{Subst}\left (\int (a+b x) \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c+d x)\right )}{d e^4}-\frac{b^3 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{-1+c+d x} \sqrt{1+c+d x}\right )}{d e^4}\\ &=\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \left (a+b \cosh ^{-1}(c+d x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{b^3 \tan ^{-1}\left (\sqrt{-1+c+d x} \sqrt{1+c+d x}\right )}{d e^4}-\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{\left (i b^3\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (-i e^x\right ) \, dx,x,\cosh ^{-1}(c+d x)\right )}{d e^4}-\frac{\left (i b^3\right ) \operatorname{Subst}\left (\int \text{Li}_2\left (i e^x\right ) \, dx,x,\cosh ^{-1}(c+d x)\right )}{d e^4}\\ &=\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \left (a+b \cosh ^{-1}(c+d x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{b^3 \tan ^{-1}\left (\sqrt{-1+c+d x} \sqrt{1+c+d x}\right )}{d e^4}-\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{\left (i b^3\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{\left (i b^3\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(i x)}{x} \, dx,x,e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}\\ &=\frac{b^2 \left (a+b \cosh ^{-1}(c+d x)\right )}{d e^4 (c+d x)}+\frac{b \sqrt{-1+c+d x} \sqrt{1+c+d x} \left (a+b \cosh ^{-1}(c+d x)\right )^2}{2 d e^4 (c+d x)^2}-\frac{\left (a+b \cosh ^{-1}(c+d x)\right )^3}{3 d e^4 (c+d x)^3}+\frac{b \left (a+b \cosh ^{-1}(c+d x)\right )^2 \tan ^{-1}\left (e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{b^3 \tan ^{-1}\left (\sqrt{-1+c+d x} \sqrt{1+c+d x}\right )}{d e^4}-\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{i b^2 \left (a+b \cosh ^{-1}(c+d x)\right ) \text{Li}_2\left (i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}+\frac{i b^3 \text{Li}_3\left (-i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}-\frac{i b^3 \text{Li}_3\left (i e^{\cosh ^{-1}(c+d x)}\right )}{d e^4}\\ \end{align*}

Mathematica [A]  time = 2.16661, size = 504, normalized size = 1.7 \[ \frac{6 a b^2 \left (-i \text{PolyLog}\left (2,-i e^{-\cosh ^{-1}(c+d x)}\right )+i \text{PolyLog}\left (2,i e^{-\cosh ^{-1}(c+d x)}\right )+\frac{1}{c+d x}-\frac{\cosh ^{-1}(c+d x)^2}{(c+d x)^3}+\frac{\sqrt{\frac{c+d x-1}{c+d x+1}} (c+d x+1) \cosh ^{-1}(c+d x)}{(c+d x)^2}-i \cosh ^{-1}(c+d x) \log \left (1-i e^{-\cosh ^{-1}(c+d x)}\right )+i \cosh ^{-1}(c+d x) \log \left (1+i e^{-\cosh ^{-1}(c+d x)}\right )\right )+b^3 \left (-3 i \left (2 \cosh ^{-1}(c+d x) \text{PolyLog}\left (2,-i e^{-\cosh ^{-1}(c+d x)}\right )-2 \cosh ^{-1}(c+d x) \text{PolyLog}\left (2,i e^{-\cosh ^{-1}(c+d x)}\right )+2 \text{PolyLog}\left (3,-i e^{-\cosh ^{-1}(c+d x)}\right )-2 \text{PolyLog}\left (3,i e^{-\cosh ^{-1}(c+d x)}\right )+\cosh ^{-1}(c+d x)^2 \log \left (1-i e^{-\cosh ^{-1}(c+d x)}\right )-\cosh ^{-1}(c+d x)^2 \log \left (1+i e^{-\cosh ^{-1}(c+d x)}\right )-4 i \tan ^{-1}\left (\tanh \left (\frac{1}{2} \cosh ^{-1}(c+d x)\right )\right )\right )-\frac{2 \cosh ^{-1}(c+d x)^3}{(c+d x)^3}+\frac{3 \sqrt{\frac{c+d x-1}{c+d x+1}} (c+d x+1) \cosh ^{-1}(c+d x)^2}{(c+d x)^2}+\frac{6 \cosh ^{-1}(c+d x)}{c+d x}\right )+\frac{3 a^2 b \sqrt{c+d x-1} \sqrt{c+d x+1}}{(c+d x)^2}-3 a^2 b \tan ^{-1}\left (\frac{1}{\sqrt{c+d x-1} \sqrt{c+d x+1}}\right )-\frac{6 a^2 b \cosh ^{-1}(c+d x)}{(c+d x)^3}-\frac{2 a^3}{(c+d x)^3}}{6 d e^4} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c + d*x])^3/(c*e + d*e*x)^4,x]

[Out]

((-2*a^3)/(c + d*x)^3 + (3*a^2*b*Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])/(c + d*x)^2 - (6*a^2*b*ArcCosh[c + d*x]
)/(c + d*x)^3 - 3*a^2*b*ArcTan[1/(Sqrt[-1 + c + d*x]*Sqrt[1 + c + d*x])] + 6*a*b^2*((c + d*x)^(-1) + (Sqrt[(-1
 + c + d*x)/(1 + c + d*x)]*(1 + c + d*x)*ArcCosh[c + d*x])/(c + d*x)^2 - ArcCosh[c + d*x]^2/(c + d*x)^3 - I*Ar
cCosh[c + d*x]*Log[1 - I/E^ArcCosh[c + d*x]] + I*ArcCosh[c + d*x]*Log[1 + I/E^ArcCosh[c + d*x]] - I*PolyLog[2,
 (-I)/E^ArcCosh[c + d*x]] + I*PolyLog[2, I/E^ArcCosh[c + d*x]]) + b^3*((6*ArcCosh[c + d*x])/(c + d*x) + (3*Sqr
t[(-1 + c + d*x)/(1 + c + d*x)]*(1 + c + d*x)*ArcCosh[c + d*x]^2)/(c + d*x)^2 - (2*ArcCosh[c + d*x]^3)/(c + d*
x)^3 - (3*I)*((-4*I)*ArcTan[Tanh[ArcCosh[c + d*x]/2]] + ArcCosh[c + d*x]^2*Log[1 - I/E^ArcCosh[c + d*x]] - Arc
Cosh[c + d*x]^2*Log[1 + I/E^ArcCosh[c + d*x]] + 2*ArcCosh[c + d*x]*PolyLog[2, (-I)/E^ArcCosh[c + d*x]] - 2*Arc
Cosh[c + d*x]*PolyLog[2, I/E^ArcCosh[c + d*x]] + 2*PolyLog[3, (-I)/E^ArcCosh[c + d*x]] - 2*PolyLog[3, I/E^ArcC
osh[c + d*x]])))/(6*d*e^4)

________________________________________________________________________________________

Maple [F]  time = 0.184, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( a+b{\rm arccosh} \left (dx+c\right ) \right ) ^{3}}{ \left ( dex+ce \right ) ^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(d*x+c))^3/(d*e*x+c*e)^4,x)

[Out]

int((a+b*arccosh(d*x+c))^3/(d*e*x+c*e)^4,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(d*x+c))^3/(d*e*x+c*e)^4,x, algorithm="maxima")

[Out]

-1/3*b^3*log(d*x + sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + c)^3/(d^4*e^4*x^3 + 3*c*d^3*e^4*x^2 + 3*c^2*d^2*e^4*x
 + c^3*d*e^4) - 1/3*a^3/(d^4*e^4*x^3 + 3*c*d^3*e^4*x^2 + 3*c^2*d^2*e^4*x + c^3*d*e^4) + integrate(((3*(c^3 - c
)*a*b^2 + (c^3 - c)*b^3 + (3*a*b^2*d^3 + b^3*d^3)*x^3 + 3*(3*a*b^2*c*d^2 + b^3*c*d^2)*x^2 + (b^3*c^2 + 3*(c^2
- 1)*a*b^2 + (3*a*b^2*d^2 + b^3*d^2)*x^2 + 2*(3*a*b^2*c*d + b^3*c*d)*x)*sqrt(d*x + c + 1)*sqrt(d*x + c - 1) +
(3*(3*c^2*d - d)*a*b^2 + (3*c^2*d - d)*b^3)*x)*log(d*x + sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + c)^2 + 3*(a^2*b
*d^3*x^3 + 3*a^2*b*c*d^2*x^2 + (3*c^2*d - d)*a^2*b*x + (c^3 - c)*a^2*b + (a^2*b*d^2*x^2 + 2*a^2*b*c*d*x + (c^2
 - 1)*a^2*b)*sqrt(d*x + c + 1)*sqrt(d*x + c - 1))*log(d*x + sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + c))/(d^7*e^4
*x^7 + 7*c*d^6*e^4*x^6 + c^7*e^4 - c^5*e^4 + (21*c^2*d^5*e^4 - d^5*e^4)*x^5 + 5*(7*c^3*d^4*e^4 - c*d^4*e^4)*x^
4 + 5*(7*c^4*d^3*e^4 - 2*c^2*d^3*e^4)*x^3 + (21*c^5*d^2*e^4 - 10*c^3*d^2*e^4)*x^2 + (d^6*e^4*x^6 + 6*c*d^5*e^4
*x^5 + c^6*e^4 - c^4*e^4 + (15*c^2*d^4*e^4 - d^4*e^4)*x^4 + 4*(5*c^3*d^3*e^4 - c*d^3*e^4)*x^3 + 3*(5*c^4*d^2*e
^4 - 2*c^2*d^2*e^4)*x^2 + 2*(3*c^5*d*e^4 - 2*c^3*d*e^4)*x)*sqrt(d*x + c + 1)*sqrt(d*x + c - 1) + (7*c^6*d*e^4
- 5*c^4*d*e^4)*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{3} \operatorname{arcosh}\left (d x + c\right )^{3} + 3 \, a b^{2} \operatorname{arcosh}\left (d x + c\right )^{2} + 3 \, a^{2} b \operatorname{arcosh}\left (d x + c\right ) + a^{3}}{d^{4} e^{4} x^{4} + 4 \, c d^{3} e^{4} x^{3} + 6 \, c^{2} d^{2} e^{4} x^{2} + 4 \, c^{3} d e^{4} x + c^{4} e^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(d*x+c))^3/(d*e*x+c*e)^4,x, algorithm="fricas")

[Out]

integral((b^3*arccosh(d*x + c)^3 + 3*a*b^2*arccosh(d*x + c)^2 + 3*a^2*b*arccosh(d*x + c) + a^3)/(d^4*e^4*x^4 +
 4*c*d^3*e^4*x^3 + 6*c^2*d^2*e^4*x^2 + 4*c^3*d*e^4*x + c^4*e^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{a^{3}}{c^{4} + 4 c^{3} d x + 6 c^{2} d^{2} x^{2} + 4 c d^{3} x^{3} + d^{4} x^{4}}\, dx + \int \frac{b^{3} \operatorname{acosh}^{3}{\left (c + d x \right )}}{c^{4} + 4 c^{3} d x + 6 c^{2} d^{2} x^{2} + 4 c d^{3} x^{3} + d^{4} x^{4}}\, dx + \int \frac{3 a b^{2} \operatorname{acosh}^{2}{\left (c + d x \right )}}{c^{4} + 4 c^{3} d x + 6 c^{2} d^{2} x^{2} + 4 c d^{3} x^{3} + d^{4} x^{4}}\, dx + \int \frac{3 a^{2} b \operatorname{acosh}{\left (c + d x \right )}}{c^{4} + 4 c^{3} d x + 6 c^{2} d^{2} x^{2} + 4 c d^{3} x^{3} + d^{4} x^{4}}\, dx}{e^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(d*x+c))**3/(d*e*x+c*e)**4,x)

[Out]

(Integral(a**3/(c**4 + 4*c**3*d*x + 6*c**2*d**2*x**2 + 4*c*d**3*x**3 + d**4*x**4), x) + Integral(b**3*acosh(c
+ d*x)**3/(c**4 + 4*c**3*d*x + 6*c**2*d**2*x**2 + 4*c*d**3*x**3 + d**4*x**4), x) + Integral(3*a*b**2*acosh(c +
 d*x)**2/(c**4 + 4*c**3*d*x + 6*c**2*d**2*x**2 + 4*c*d**3*x**3 + d**4*x**4), x) + Integral(3*a**2*b*acosh(c +
d*x)/(c**4 + 4*c**3*d*x + 6*c**2*d**2*x**2 + 4*c*d**3*x**3 + d**4*x**4), x))/e**4

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arcosh}\left (d x + c\right ) + a\right )}^{3}}{{\left (d e x + c e\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(d*x+c))^3/(d*e*x+c*e)^4,x, algorithm="giac")

[Out]

integrate((b*arccosh(d*x + c) + a)^3/(d*e*x + c*e)^4, x)