3.61 \(\int \sinh ^{-1}(a+b x) \, dx\)

Optimal. Leaf size=34 \[ \frac{(a+b x) \sinh ^{-1}(a+b x)}{b}-\frac{\sqrt{(a+b x)^2+1}}{b} \]

[Out]

-(Sqrt[1 + (a + b*x)^2]/b) + ((a + b*x)*ArcSinh[a + b*x])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0139822, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 6, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5863, 5653, 261} \[ \frac{(a+b x) \sinh ^{-1}(a+b x)}{b}-\frac{\sqrt{(a+b x)^2+1}}{b} \]

Antiderivative was successfully verified.

[In]

Int[ArcSinh[a + b*x],x]

[Out]

-(Sqrt[1 + (a + b*x)^2]/b) + ((a + b*x)*ArcSinh[a + b*x])/b

Rule 5863

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \sinh ^{-1}(a+b x) \, dx &=\frac{\operatorname{Subst}\left (\int \sinh ^{-1}(x) \, dx,x,a+b x\right )}{b}\\ &=\frac{(a+b x) \sinh ^{-1}(a+b x)}{b}-\frac{\operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2}} \, dx,x,a+b x\right )}{b}\\ &=-\frac{\sqrt{1+(a+b x)^2}}{b}+\frac{(a+b x) \sinh ^{-1}(a+b x)}{b}\\ \end{align*}

Mathematica [A]  time = 0.026631, size = 40, normalized size = 1.18 \[ \frac{(a+b x) \sinh ^{-1}(a+b x)-\sqrt{a^2+2 a b x+b^2 x^2+1}}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSinh[a + b*x],x]

[Out]

(-Sqrt[1 + a^2 + 2*a*b*x + b^2*x^2] + (a + b*x)*ArcSinh[a + b*x])/b

________________________________________________________________________________________

Maple [A]  time = 0.001, size = 31, normalized size = 0.9 \begin{align*}{\frac{1}{b} \left ( \left ( bx+a \right ){\it Arcsinh} \left ( bx+a \right ) -\sqrt{1+ \left ( bx+a \right ) ^{2}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsinh(b*x+a),x)

[Out]

1/b*((b*x+a)*arcsinh(b*x+a)-(1+(b*x+a)^2)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.08046, size = 41, normalized size = 1.21 \begin{align*} \frac{{\left (b x + a\right )} \operatorname{arsinh}\left (b x + a\right ) - \sqrt{{\left (b x + a\right )}^{2} + 1}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(b*x+a),x, algorithm="maxima")

[Out]

((b*x + a)*arcsinh(b*x + a) - sqrt((b*x + a)^2 + 1))/b

________________________________________________________________________________________

Fricas [A]  time = 2.4697, size = 135, normalized size = 3.97 \begin{align*} \frac{{\left (b x + a\right )} \log \left (b x + a + \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right ) - \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(b*x+a),x, algorithm="fricas")

[Out]

((b*x + a)*log(b*x + a + sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1)) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))/b

________________________________________________________________________________________

Sympy [A]  time = 0.183704, size = 46, normalized size = 1.35 \begin{align*} \begin{cases} \frac{a \operatorname{asinh}{\left (a + b x \right )}}{b} + x \operatorname{asinh}{\left (a + b x \right )} - \frac{\sqrt{a^{2} + 2 a b x + b^{2} x^{2} + 1}}{b} & \text{for}\: b \neq 0 \\x \operatorname{asinh}{\left (a \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asinh(b*x+a),x)

[Out]

Piecewise((a*asinh(a + b*x)/b + x*asinh(a + b*x) - sqrt(a**2 + 2*a*b*x + b**2*x**2 + 1)/b, Ne(b, 0)), (x*asinh
(a), True))

________________________________________________________________________________________

Giac [B]  time = 1.28512, size = 124, normalized size = 3.65 \begin{align*} -b{\left (\frac{a \log \left (-a b -{\left (x{\left | b \right |} - \sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}\right )}{\left | b \right |}\right )}{b{\left | b \right |}} + \frac{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2} + 1}}{b^{2}}\right )} + x \log \left (b x + a + \sqrt{{\left (b x + a\right )}^{2} + 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(b*x+a),x, algorithm="giac")

[Out]

-b*(a*log(-a*b - (x*abs(b) - sqrt(b^2*x^2 + 2*a*b*x + a^2 + 1))*abs(b))/(b*abs(b)) + sqrt(b^2*x^2 + 2*a*b*x +
a^2 + 1)/b^2) + x*log(b*x + a + sqrt((b*x + a)^2 + 1))