3.328 \(\int (a+i b \sin ^{-1}(1-i d x^2))^{5/2} \, dx\)

Optimal. Leaf size=348 \[ -\frac{15 \sqrt{\pi } \sqrt{-\frac{i}{b}} b^3 x \left (\sinh \left (\frac{a}{2 b}\right )+i \cosh \left (\frac{a}{2 b}\right )\right ) \text{FresnelC}\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )}{\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )}+\frac{15 \sqrt{\pi } b^2 x \left (\cosh \left (\frac{a}{2 b}\right )+i \sinh \left (\frac{a}{2 b}\right )\right ) S\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )}{\sqrt{-\frac{i}{b}} \left (\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}+15 b^2 x \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}-\frac{5 b \sqrt{d^2 x^4+2 i d x^2} \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}{d x}+x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2} \]

[Out]

15*b^2*x*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]] - (5*b*Sqrt[(2*I)*d*x^2 + d^2*x^4]*(a + I*b*ArcSin[1 - I*d*x^2])^(3
/2))/(d*x) + x*(a + I*b*ArcSin[1 - I*d*x^2])^(5/2) + (15*b^2*Sqrt[Pi]*x*FresnelS[(Sqrt[(-I)/b]*Sqrt[a + I*b*Ar
cSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] + I*Sinh[a/(2*b)]))/(Sqrt[(-I)/b]*(Cos[ArcSin[1 - I*d*x^2]/2] - S
in[ArcSin[1 - I*d*x^2]/2])) - (15*Sqrt[(-I)/b]*b^3*Sqrt[Pi]*x*FresnelC[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I
*d*x^2]])/Sqrt[Pi]]*(I*Cosh[a/(2*b)] + Sinh[a/(2*b)]))/(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2
])

________________________________________________________________________________________

Rubi [A]  time = 0.111911, antiderivative size = 348, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {4814, 4811} \[ -\frac{15 \sqrt{\pi } \sqrt{-\frac{i}{b}} b^3 x \left (\sinh \left (\frac{a}{2 b}\right )+i \cosh \left (\frac{a}{2 b}\right )\right ) \text{FresnelC}\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )}{\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )}+\frac{15 \sqrt{\pi } b^2 x \left (\cosh \left (\frac{a}{2 b}\right )+i \sinh \left (\frac{a}{2 b}\right )\right ) S\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )}{\sqrt{-\frac{i}{b}} \left (\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}+15 b^2 x \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}-\frac{5 b \sqrt{d^2 x^4+2 i d x^2} \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}{d x}+x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*b*ArcSin[1 - I*d*x^2])^(5/2),x]

[Out]

15*b^2*x*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]] - (5*b*Sqrt[(2*I)*d*x^2 + d^2*x^4]*(a + I*b*ArcSin[1 - I*d*x^2])^(3
/2))/(d*x) + x*(a + I*b*ArcSin[1 - I*d*x^2])^(5/2) + (15*b^2*Sqrt[Pi]*x*FresnelS[(Sqrt[(-I)/b]*Sqrt[a + I*b*Ar
cSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] + I*Sinh[a/(2*b)]))/(Sqrt[(-I)/b]*(Cos[ArcSin[1 - I*d*x^2]/2] - S
in[ArcSin[1 - I*d*x^2]/2])) - (15*Sqrt[(-I)/b]*b^3*Sqrt[Pi]*x*FresnelC[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I
*d*x^2]])/Sqrt[Pi]]*(I*Cosh[a/(2*b)] + Sinh[a/(2*b)]))/(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2
])

Rule 4814

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*(a + b*ArcSin[c + d*x^2])^n, x] + (-
Dist[4*b^2*n*(n - 1), Int[(a + b*ArcSin[c + d*x^2])^(n - 2), x], x] + Simp[(2*b*n*Sqrt[-2*c*d*x^2 - d^2*x^4]*(
a + b*ArcSin[c + d*x^2])^(n - 1))/(d*x), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1]

Rule 4811

Int[Sqrt[(a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[x*Sqrt[a + b*ArcSin[c + d*x^2]], x] + (
-Simp[(Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*FresnelC[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]])/(Sqr
t[c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])), x] + Simp[(Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a
/(2*b)])*FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]])/(Sqrt[c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[
ArcSin[c + d*x^2]/2])), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1]

Rubi steps

\begin{align*} \int \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2} \, dx &=-\frac{5 b \sqrt{2 i d x^2+d^2 x^4} \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}{d x}+x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2}+\left (15 b^2\right ) \int \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )} \, dx\\ &=15 b^2 x \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}-\frac{5 b \sqrt{2 i d x^2+d^2 x^4} \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}{d x}+x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2}+\frac{15 b^2 \sqrt{\pi } x S\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right ) \left (\cosh \left (\frac{a}{2 b}\right )+i \sinh \left (\frac{a}{2 b}\right )\right )}{\sqrt{-\frac{i}{b}} \left (\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}-\frac{15 \sqrt{-\frac{i}{b}} b^3 \sqrt{\pi } x C\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right ) \left (i \cosh \left (\frac{a}{2 b}\right )+\sinh \left (\frac{a}{2 b}\right )\right )}{\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )}\\ \end{align*}

Mathematica [A]  time = 0.270713, size = 337, normalized size = 0.97 \[ \frac{15 b^2 x \left (-\sqrt{\pi } \left (\cosh \left (\frac{a}{2 b}\right )-i \sinh \left (\frac{a}{2 b}\right )\right ) \text{FresnelC}\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )+\sqrt{\pi } \left (\cosh \left (\frac{a}{2 b}\right )+i \sinh \left (\frac{a}{2 b}\right )\right ) S\left (\frac{\sqrt{-\frac{i}{b}} \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}}{\sqrt{\pi }}\right )+\sqrt{-\frac{i}{b}} \left (\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right ) \sqrt{a+i b \sin ^{-1}\left (1-i d x^2\right )}\right )}{\sqrt{-\frac{i}{b}} \left (\cos \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )-\sin \left (\frac{1}{2} \sin ^{-1}\left (1-i d x^2\right )\right )\right )}+x \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{5/2}-\frac{5 b \sqrt{d x^2 \left (d x^2+2 i\right )} \left (a+i b \sin ^{-1}\left (1-i d x^2\right )\right )^{3/2}}{d x} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*b*ArcSin[1 - I*d*x^2])^(5/2),x]

[Out]

(-5*b*Sqrt[d*x^2*(2*I + d*x^2)]*(a + I*b*ArcSin[1 - I*d*x^2])^(3/2))/(d*x) + x*(a + I*b*ArcSin[1 - I*d*x^2])^(
5/2) + (15*b^2*x*(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]]*(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1 -
I*d*x^2]/2]) - Sqrt[Pi]*FresnelC[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)] - I
*Sinh[a/(2*b)]) + Sqrt[Pi]*FresnelS[(Sqrt[(-I)/b]*Sqrt[a + I*b*ArcSin[1 - I*d*x^2]])/Sqrt[Pi]]*(Cosh[a/(2*b)]
+ I*Sinh[a/(2*b)])))/(Sqrt[(-I)/b]*(Cos[ArcSin[1 - I*d*x^2]/2] - Sin[ArcSin[1 - I*d*x^2]/2]))

________________________________________________________________________________________

Maple [F]  time = 0.102, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b{\it Arcsinh} \left ( i+d{x}^{2} \right ) \right ) ^{{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(I+d*x^2))^(5/2),x)

[Out]

int((a+b*arcsinh(I+d*x^2))^(5/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \operatorname{arsinh}\left (d x^{2} + i\right ) + a\right )}^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(I+d*x^2))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(d*x^2 + I) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(I+d*x^2))^(5/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(I+d*x**2))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \operatorname{arsinh}\left (d x^{2} + i\right ) + a\right )}^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(I+d*x^2))^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x^2 + I) + a)^(5/2), x)