3.224 \(\int \frac{(c e+d e x)^2}{(a+b \sinh ^{-1}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=410 \[ \frac{\sqrt{\pi } e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}-\frac{3 \sqrt{3 \pi } e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}-\frac{\sqrt{\pi } e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{3 \sqrt{3 \pi } e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{24 e^2 \sqrt{(c+d x)^2+1} (c+d x)^2}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{(c+d x)^2+1}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{2 e^2 \sqrt{(c+d x)^2+1} (c+d x)^2}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(5*b*d*(a + b*ArcSinh[c + d*x])^(5/2)) - (8*e^2*(c + d*x))/(15*b^2*
d*(a + b*ArcSinh[c + d*x])^(3/2)) - (4*e^2*(c + d*x)^3)/(5*b^2*d*(a + b*ArcSinh[c + d*x])^(3/2)) - (16*e^2*Sqr
t[1 + (c + d*x)^2])/(15*b^3*d*Sqrt[a + b*ArcSinh[c + d*x]]) - (24*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(5*b^
3*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/
2)*d) - (3*e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(5*b^(7/2)*d) - (e^
2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d*E^(a/b)) + (3*e^2*Sqrt[3*Pi]*Erfi[(Sqrt[3
]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(5*b^(7/2)*d*E^((3*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 1.1098, antiderivative size = 410, normalized size of antiderivative = 1., number of steps used = 24, number of rules used = 11, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.44, Rules used = {5865, 12, 5667, 5774, 5665, 3308, 2180, 2204, 2205, 5655, 5779} \[ \frac{\sqrt{\pi } e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}-\frac{3 \sqrt{3 \pi } e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}-\frac{\sqrt{\pi } e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{3 \sqrt{3 \pi } e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{24 e^2 \sqrt{(c+d x)^2+1} (c+d x)^2}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{(c+d x)^2+1}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{2 e^2 \sqrt{(c+d x)^2+1} (c+d x)^2}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(5*b*d*(a + b*ArcSinh[c + d*x])^(5/2)) - (8*e^2*(c + d*x))/(15*b^2*
d*(a + b*ArcSinh[c + d*x])^(3/2)) - (4*e^2*(c + d*x)^3)/(5*b^2*d*(a + b*ArcSinh[c + d*x])^(3/2)) - (16*e^2*Sqr
t[1 + (c + d*x)^2])/(15*b^3*d*Sqrt[a + b*ArcSinh[c + d*x]]) - (24*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(5*b^
3*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/
2)*d) - (3*e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(5*b^(7/2)*d) - (e^
2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d*E^(a/b)) + (3*e^2*Sqrt[3*Pi]*Erfi[(Sqrt[3
]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(5*b^(7/2)*d*E^((3*a)/b))

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5667

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] + (-Dist[(c*(m + 1))/(b*(n + 1)), Int[(x^(m + 1)*(a + b*ArcSinh[c*x])^(n +
 1))/Sqrt[1 + c^2*x^2], x], x] - Dist[m/(b*c*(n + 1)), Int[(x^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c
^2*x^2], x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 5774

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[((f*x)^m*(a + b*ArcSinh[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x
)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -
1] && GtQ[d, 0]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 5655

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1
))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c^2*x^2], x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^2}{\left (a+b \sinh ^{-1}(c+d x)\right )^{7/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^2 x^2}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 \operatorname{Subst}\left (\int \frac{x^2}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+\frac{\left (4 e^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}+\frac{\left (6 e^2\right ) \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac{\left (8 e^2\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d}+\frac{\left (12 e^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{5 b^2 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{24 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{\left (16 e^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2} \sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{15 b^3 d}+\frac{\left (24 e^2\right ) \operatorname{Subst}\left (\int \left (-\frac{\sinh (x)}{4 \sqrt{a+b x}}+\frac{3 \sinh (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{24 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{\left (16 e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}-\frac{\left (6 e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}+\frac{\left (18 e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{24 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{\left (8 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}+\frac{\left (8 e^2\right ) \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}+\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}-\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}-\frac{\left (9 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}+\frac{\left (9 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{5 b^3 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{24 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{\left (16 e^2\right ) \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d}+\frac{\left (16 e^2\right ) \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d}+\frac{\left (6 e^2\right ) \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{5 b^4 d}-\frac{\left (6 e^2\right ) \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{5 b^4 d}-\frac{\left (18 e^2\right ) \operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{5 b^4 d}+\frac{\left (18 e^2\right ) \operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{5 b^4 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{8 e^2 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{4 e^2 (c+d x)^3}{5 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{16 e^2 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{24 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{5 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{e^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}-\frac{3 e^2 e^{\frac{3 a}{b}} \sqrt{3 \pi } \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}-\frac{e^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{3 e^2 e^{-\frac{3 a}{b}} \sqrt{3 \pi } \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{5 b^{7/2} d}\\ \end{align*}

Mathematica [A]  time = 1.44251, size = 474, normalized size = 1.16 \[ \frac{e^2 \left (e^{-\sinh ^{-1}(c+d x)} \left (-4 e^{\frac{a}{b}+\sinh ^{-1}(c+d x)} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\sinh ^{-1}(c+d x)\right )+4 a^2+2 b (4 a-b) \sinh ^{-1}(c+d x)-2 a b+4 b^2 \sinh ^{-1}(c+d x)^2+3 b^2\right )-3 \left (2 e^{-\frac{3 a}{b}} \left (a+b \sinh ^{-1}(c+d x)\right ) \left (6 \sqrt{3} b \left (-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )^{3/2} \text{Gamma}\left (\frac{1}{2},-\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+e^{3 \left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )} \left (6 a+6 b \sinh ^{-1}(c+d x)+b\right )\right )+b^2 e^{3 \sinh ^{-1}(c+d x)}\right )-3 e^{-3 \sinh ^{-1}(c+d x)} \left (2 \left (a+b \sinh ^{-1}(c+d x)\right ) \left (-6 \sqrt{3} e^{3 \left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right ) \text{Gamma}\left (\frac{1}{2},\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+6 a+6 b \sinh ^{-1}(c+d x)-b\right )+b^2\right )+2 e^{-\frac{a}{b}} \left (a+b \sinh ^{-1}(c+d x)\right ) \left (2 b \left (-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )^{3/2} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )+e^{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (2 a+2 b \sinh ^{-1}(c+d x)+b\right )\right )+3 b^2 e^{\sinh ^{-1}(c+d x)}\right )}{60 b^3 d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(7/2),x]

[Out]

(e^2*(3*b^2*E^ArcSinh[c + d*x] + (4*a^2 - 2*a*b + 3*b^2 + 2*(4*a - b)*b*ArcSinh[c + d*x] + 4*b^2*ArcSinh[c + d
*x]^2 - 4*E^(a/b + ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x])^2*Gamma[1/2, a/b +
ArcSinh[c + d*x]])/E^ArcSinh[c + d*x] - 3*(b^2*E^(3*ArcSinh[c + d*x]) + (2*(a + b*ArcSinh[c + d*x])*(E^(3*(a/b
 + ArcSinh[c + d*x]))*(6*a + b + 6*b*ArcSinh[c + d*x]) + 6*Sqrt[3]*b*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Gam
ma[1/2, (-3*(a + b*ArcSinh[c + d*x]))/b]))/E^((3*a)/b)) + (2*(a + b*ArcSinh[c + d*x])*(E^(a/b + ArcSinh[c + d*
x])*(2*a + b + 2*b*ArcSinh[c + d*x]) + 2*b*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Gamma[1/2, -((a + b*ArcSinh[c
 + d*x])/b)]))/E^(a/b) - (3*(b^2 + 2*(a + b*ArcSinh[c + d*x])*(6*a - b + 6*b*ArcSinh[c + d*x] - 6*Sqrt[3]*E^(3
*(a/b + ArcSinh[c + d*x]))*Sqrt[a/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x])*Gamma[1/2, (3*(a + b*ArcSinh[
c + d*x]))/b])))/E^(3*ArcSinh[c + d*x])))/(60*b^3*d*(a + b*ArcSinh[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.208, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dex+ce \right ) ^{2} \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) ^{-{\frac{7}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(7/2),x)

[Out]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asinh(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(7/2), x)