3.212 \(\int \frac{(c e+d e x)^2}{(a+b \sinh ^{-1}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=255 \[ \frac{\sqrt{\pi } e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{\sqrt{3 \pi } e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{\sqrt{\pi } e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}+\frac{\sqrt{3 \pi } e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{2 e^2 (c+d x)^2 \sqrt{(c+d x)^2+1}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}} \]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt
[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh
[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d*E
^(a/b)) + (e^2*Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d*E^((3*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.465021, antiderivative size = 255, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {5865, 12, 5665, 3308, 2180, 2204, 2205} \[ \frac{\sqrt{\pi } e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{\sqrt{3 \pi } e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{\sqrt{\pi } e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}+\frac{\sqrt{3 \pi } e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{2 e^2 (c+d x)^2 \sqrt{(c+d x)^2+1}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(-2*e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*d*Sqrt[a + b*ArcSinh[c + d*x]]) + (e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt
[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh
[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d) - (e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*b^(3/2)*d*E
^(a/b)) + (e^2*Sqrt[3*Pi]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(4*b^(3/2)*d*E^((3*a)/b))

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^2}{\left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^2 x^2}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 \operatorname{Subst}\left (\int \frac{x^2}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{\left (2 e^2\right ) \operatorname{Subst}\left (\int \left (-\frac{\sinh (x)}{4 \sqrt{a+b x}}+\frac{3 \sinh (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{e^2 \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}+\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 b d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{e^2 \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}-\frac{e^2 \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}-\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}+\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{e^{3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{e^2 \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b^2 d}-\frac{e^2 \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b^2 d}-\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b^2 d}+\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b^2 d}\\ &=-\frac{2 e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{e^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{e^2 e^{\frac{3 a}{b}} \sqrt{3 \pi } \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}-\frac{e^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}+\frac{e^2 e^{-\frac{3 a}{b}} \sqrt{3 \pi } \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 b^{3/2} d}\\ \end{align*}

Mathematica [A]  time = 0.358954, size = 327, normalized size = 1.28 \[ \frac{e^2 e^{-3 \left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )} \left (-e^{\frac{4 a}{b}+3 \sinh ^{-1}(c+d x)} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\sinh ^{-1}(c+d x)\right )+\sqrt{3} e^{3 \sinh ^{-1}(c+d x)} \sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-e^{\frac{2 a}{b}+3 \sinh ^{-1}(c+d x)} \sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )+\sqrt{3} e^{\frac{6 a}{b}+3 \sinh ^{-1}(c+d x)} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \text{Gamma}\left (\frac{1}{2},\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+e^{\frac{3 a}{b}+2 \sinh ^{-1}(c+d x)}+e^{\frac{3 a}{b}+4 \sinh ^{-1}(c+d x)}-e^{\frac{3 a}{b}+6 \sinh ^{-1}(c+d x)}-e^{\frac{3 a}{b}}\right )}{4 b d \sqrt{a+b \sinh ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^(3/2),x]

[Out]

(e^2*(-E^((3*a)/b) + E^((3*a)/b + 2*ArcSinh[c + d*x]) + E^((3*a)/b + 4*ArcSinh[c + d*x]) - E^((3*a)/b + 6*ArcS
inh[c + d*x]) - E^((4*a)/b + 3*ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, a/b + ArcSinh[c + d*x
]] + Sqrt[3]*E^(3*ArcSinh[c + d*x])*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c + d*x]
))/b] - E^((2*a)/b + 3*ArcSinh[c + d*x])*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c + d
*x])/b)] + Sqrt[3]*E^((6*a)/b + 3*ArcSinh[c + d*x])*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, (3*(a + b*ArcSinh[
c + d*x]))/b]))/(4*b*d*E^(3*(a/b + ArcSinh[c + d*x]))*Sqrt[a + b*ArcSinh[c + d*x]])

________________________________________________________________________________________

Maple [F]  time = 0.247, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dex+ce \right ) ^{2} \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)

[Out]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{2} \left (\int \frac{c^{2}}{a \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} \operatorname{asinh}{\left (c + d x \right )}}\, dx + \int \frac{d^{2} x^{2}}{a \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} \operatorname{asinh}{\left (c + d x \right )}}\, dx + \int \frac{2 c d x}{a \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} + b \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}} \operatorname{asinh}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asinh(d*x+c))**(3/2),x)

[Out]

e**2*(Integral(c**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integra
l(d**2*x**2/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x) + Integral(2*c*d*
x/(a*sqrt(a + b*asinh(c + d*x)) + b*sqrt(a + b*asinh(c + d*x))*asinh(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^(3/2), x)