3.205 \(\int \frac{(c e+d e x)^3}{\sqrt{a+b \sinh ^{-1}(c+d x)}} \, dx\)

Optimal. Leaf size=217 \[ -\frac{\sqrt{\pi } e^3 e^{\frac{4 a}{b}} \text{Erf}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}+\frac{\sqrt{\frac{\pi }{2}} e^3 e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d}+\frac{\sqrt{\pi } e^3 e^{-\frac{4 a}{b}} \text{Erfi}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}-\frac{\sqrt{\frac{\pi }{2}} e^3 e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d} \]

[Out]

-(e^3*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(32*Sqrt[b]*d) + (e^3*E^((2*a)/b)*Sq
rt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(8*Sqrt[b]*d) + (e^3*Sqrt[Pi]*Erfi[(2*Sqrt[a + b
*ArcSinh[c + d*x]])/Sqrt[b]])/(32*Sqrt[b]*d*E^((4*a)/b)) - (e^3*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c
+ d*x]])/Sqrt[b]])/(8*Sqrt[b]*d*E^((2*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.455371, antiderivative size = 217, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {5865, 12, 5669, 5448, 3308, 2180, 2204, 2205} \[ -\frac{\sqrt{\pi } e^3 e^{\frac{4 a}{b}} \text{Erf}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}+\frac{\sqrt{\frac{\pi }{2}} e^3 e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d}+\frac{\sqrt{\pi } e^3 e^{-\frac{4 a}{b}} \text{Erfi}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}-\frac{\sqrt{\frac{\pi }{2}} e^3 e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^3/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

-(e^3*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(32*Sqrt[b]*d) + (e^3*E^((2*a)/b)*Sq
rt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(8*Sqrt[b]*d) + (e^3*Sqrt[Pi]*Erfi[(2*Sqrt[a + b
*ArcSinh[c + d*x]])/Sqrt[b]])/(32*Sqrt[b]*d*E^((4*a)/b)) - (e^3*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c
+ d*x]])/Sqrt[b]])/(8*Sqrt[b]*d*E^((2*a)/b))

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^3}{\sqrt{a+b \sinh ^{-1}(c+d x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^3 x^3}{\sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^3 \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^3 \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh ^3(x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=\frac{e^3 \operatorname{Subst}\left (\int \left (-\frac{\sinh (2 x)}{4 \sqrt{a+b x}}+\frac{\sinh (4 x)}{8 \sqrt{a+b x}}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=\frac{e^3 \operatorname{Subst}\left (\int \frac{\sinh (4 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{8 d}-\frac{e^3 \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}\\ &=-\frac{e^3 \operatorname{Subst}\left (\int \frac{e^{-4 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{16 d}+\frac{e^3 \operatorname{Subst}\left (\int \frac{e^{4 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{16 d}+\frac{e^3 \operatorname{Subst}\left (\int \frac{e^{-2 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{8 d}-\frac{e^3 \operatorname{Subst}\left (\int \frac{e^{2 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{8 d}\\ &=-\frac{e^3 \operatorname{Subst}\left (\int e^{\frac{4 a}{b}-\frac{4 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{8 b d}+\frac{e^3 \operatorname{Subst}\left (\int e^{-\frac{4 a}{b}+\frac{4 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{8 b d}+\frac{e^3 \operatorname{Subst}\left (\int e^{\frac{2 a}{b}-\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d}-\frac{e^3 \operatorname{Subst}\left (\int e^{-\frac{2 a}{b}+\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d}\\ &=-\frac{e^3 e^{\frac{4 a}{b}} \sqrt{\pi } \text{erf}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}+\frac{e^3 e^{\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d}+\frac{e^3 e^{-\frac{4 a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{2 \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{32 \sqrt{b} d}-\frac{e^3 e^{-\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d}\\ \end{align*}

Mathematica [A]  time = 0.224919, size = 205, normalized size = 0.94 \[ \frac{e^3 e^{-\frac{4 a}{b}} \left (\sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-2 \sqrt{2} e^{\frac{2 a}{b}} \sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )+e^{\frac{6 a}{b}} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (e^{\frac{2 a}{b}} \text{Gamma}\left (\frac{1}{2},\frac{4 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-2 \sqrt{2} \text{Gamma}\left (\frac{1}{2},\frac{2 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )\right )\right )}{32 d \sqrt{a+b \sinh ^{-1}(c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^3/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(e^3*(Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-4*(a + b*ArcSinh[c + d*x]))/b] - 2*Sqrt[2]*E^((2*a)/b)*
Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-2*(a + b*ArcSinh[c + d*x]))/b] + E^((6*a)/b)*Sqrt[a/b + ArcSi
nh[c + d*x]]*(-2*Sqrt[2]*Gamma[1/2, (2*(a + b*ArcSinh[c + d*x]))/b] + E^((2*a)/b)*Gamma[1/2, (4*(a + b*ArcSinh
[c + d*x]))/b])))/(32*d*E^((4*a)/b)*Sqrt[a + b*ArcSinh[c + d*x]])

________________________________________________________________________________________

Maple [F]  time = 0.219, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dex+ce \right ) ^{3}{\frac{1}{\sqrt{a+b{\it Arcsinh} \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{3}}{\sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^3/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{3} \left (\int \frac{c^{3}}{\sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}}\, dx + \int \frac{d^{3} x^{3}}{\sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}}\, dx + \int \frac{3 c d^{2} x^{2}}{\sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}}\, dx + \int \frac{3 c^{2} d x}{\sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**3/(a+b*asinh(d*x+c))**(1/2),x)

[Out]

e**3*(Integral(c**3/sqrt(a + b*asinh(c + d*x)), x) + Integral(d**3*x**3/sqrt(a + b*asinh(c + d*x)), x) + Integ
ral(3*c*d**2*x**2/sqrt(a + b*asinh(c + d*x)), x) + Integral(3*c**2*d*x/sqrt(a + b*asinh(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{3}}{\sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^3/sqrt(b*arcsinh(d*x + c) + a), x)