3.19 \(\int \frac{(d+e x)^3}{a+b \sinh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=394 \[ -\frac{3 d^2 e \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{2 b c^2}-\frac{3 d e^2 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{3 d e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{e^3 \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{4 b c^4}-\frac{e^3 \sinh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right )}{8 b c^4}+\frac{3 d^2 e \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{e^3 \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{4 b c^4}+\frac{e^3 \cosh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right )}{8 b c^4}+\frac{d^3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{d^3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c} \]

[Out]

(d^3*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/(b*c) - (3*d*e^2*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/
(4*b*c^3) + (3*d*e^2*Cosh[(3*a)/b]*CoshIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b*c^3) - (3*d^2*e*CoshIntegral[(
2*a)/b + 2*ArcSinh[c*x]]*Sinh[(2*a)/b])/(2*b*c^2) + (e^3*CoshIntegral[(2*a)/b + 2*ArcSinh[c*x]]*Sinh[(2*a)/b])
/(4*b*c^4) - (e^3*CoshIntegral[(4*a)/b + 4*ArcSinh[c*x]]*Sinh[(4*a)/b])/(8*b*c^4) - (d^3*Sinh[a/b]*SinhIntegra
l[a/b + ArcSinh[c*x]])/(b*c) + (3*d*e^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(4*b*c^3) + (3*d^2*e*Cosh[
(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSinh[c*x]])/(2*b*c^2) - (e^3*Cosh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSi
nh[c*x]])/(4*b*c^4) - (3*d*e^2*Sinh[(3*a)/b]*SinhIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b*c^3) + (e^3*Cosh[(4*
a)/b]*SinhIntegral[(4*a)/b + 4*ArcSinh[c*x]])/(8*b*c^4)

________________________________________________________________________________________

Rubi [A]  time = 1.17237, antiderivative size = 394, normalized size of antiderivative = 1., number of steps used = 27, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {5805, 6742, 3303, 3298, 3301, 5448, 12} \[ -\frac{3 d^2 e \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{2 b c^2}-\frac{3 d e^2 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{3 d e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{e^3 \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{4 b c^4}-\frac{e^3 \sinh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right )}{8 b c^4}+\frac{3 d^2 e \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{2 b c^2}+\frac{3 d e^2 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d e^2 \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{e^3 \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{4 b c^4}+\frac{e^3 \cosh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right )}{8 b c^4}+\frac{d^3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{d^3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3/(a + b*ArcSinh[c*x]),x]

[Out]

(d^3*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/(b*c) - (3*d*e^2*Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]])/
(4*b*c^3) + (3*d*e^2*Cosh[(3*a)/b]*CoshIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b*c^3) - (3*d^2*e*CoshIntegral[(
2*a)/b + 2*ArcSinh[c*x]]*Sinh[(2*a)/b])/(2*b*c^2) + (e^3*CoshIntegral[(2*a)/b + 2*ArcSinh[c*x]]*Sinh[(2*a)/b])
/(4*b*c^4) - (e^3*CoshIntegral[(4*a)/b + 4*ArcSinh[c*x]]*Sinh[(4*a)/b])/(8*b*c^4) - (d^3*Sinh[a/b]*SinhIntegra
l[a/b + ArcSinh[c*x]])/(b*c) + (3*d*e^2*Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(4*b*c^3) + (3*d^2*e*Cosh[
(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSinh[c*x]])/(2*b*c^2) - (e^3*Cosh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcSi
nh[c*x]])/(4*b*c^4) - (3*d*e^2*Sinh[(3*a)/b]*SinhIntegral[(3*a)/b + 3*ArcSinh[c*x]])/(4*b*c^3) + (e^3*Cosh[(4*
a)/b]*SinhIntegral[(4*a)/b + 4*ArcSinh[c*x]])/(8*b*c^4)

Rule 5805

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst
[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[m, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

\begin{align*} \int \frac{(d+e x)^3}{a+b \sinh ^{-1}(c x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cosh (x) (c d+e \sinh (x))^3}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^4}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{c^3 d^3 \cosh (x)}{a+b x}+\frac{3 c^2 d^2 e \cosh (x) \sinh (x)}{a+b x}+\frac{3 c d e^2 \cosh (x) \sinh ^2(x)}{a+b x}+\frac{e^3 \cosh (x) \sinh ^3(x)}{a+b x}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^4}\\ &=\frac{d^3 \operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c}+\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh ^2(x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac{e^3 \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh ^3(x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^4}\\ &=\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{2 (a+b x)} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \left (-\frac{\cosh (x)}{4 (a+b x)}+\frac{\cosh (3 x)}{4 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^3}+\frac{e^3 \operatorname{Subst}\left (\int \left (-\frac{\sinh (2 x)}{4 (a+b x)}+\frac{\sinh (4 x)}{8 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c x)\right )}{c^4}+\frac{\left (d^3 \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c}-\frac{\left (d^3 \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c}\\ &=\frac{d^3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{d^3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}+\frac{\left (3 d^2 e\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^2}-\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac{\left (3 d e^2\right ) \operatorname{Subst}\left (\int \frac{\cosh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac{e^3 \operatorname{Subst}\left (\int \frac{\sinh (4 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^4}-\frac{e^3 \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^4}\\ &=\frac{d^3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{d^3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{\left (3 d e^2 \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac{\left (3 d^2 e \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^2}-\frac{\left (e^3 \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^4}+\frac{\left (3 d e^2 \cosh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}+\frac{\left (e^3 \cosh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^4}+\frac{\left (3 d e^2 \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}-\frac{\left (3 d^2 e \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{2 c^2}+\frac{\left (e^3 \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^4}-\frac{\left (3 d e^2 \sinh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{4 c^3}-\frac{\left (e^3 \sinh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{8 c^4}\\ &=\frac{d^3 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}-\frac{3 d e^2 \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{3 d e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}-\frac{3 d^2 e \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right ) \sinh \left (\frac{2 a}{b}\right )}{2 b c^2}+\frac{e^3 \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right ) \sinh \left (\frac{2 a}{b}\right )}{4 b c^4}-\frac{e^3 \text{Chi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right ) \sinh \left (\frac{4 a}{b}\right )}{8 b c^4}-\frac{d^3 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c}+\frac{3 d e^2 \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{3 d^2 e \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{2 b c^2}-\frac{e^3 \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )}{4 b c^4}-\frac{3 d e^2 \sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c x)\right )}{4 b c^3}+\frac{e^3 \cosh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \sinh ^{-1}(c x)\right )}{8 b c^4}\\ \end{align*}

Mathematica [A]  time = 0.670153, size = 305, normalized size = 0.77 \[ -\frac{3 d^2 e \left (\sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )-\cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \sinh ^{-1}(c x)\right )\right )}{2 b c^2}+\frac{3 d e^2 \left (-\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )+\cosh \left (\frac{3 a}{b}\right ) \text{Chi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )+\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )-\sinh \left (\frac{3 a}{b}\right ) \text{Shi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )\right )}{4 b c^3}+\frac{e^3 \left (2 \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (2 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )-\sinh \left (\frac{4 a}{b}\right ) \text{Chi}\left (4 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )-2 \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (2 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )+\cosh \left (\frac{4 a}{b}\right ) \text{Shi}\left (4 \left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )\right )}{8 b c^4}+\frac{d^3 \left (\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )-\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )\right )}{b c} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3/(a + b*ArcSinh[c*x]),x]

[Out]

(d^3*(Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]] - Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]]))/(b*c) + (3*d*e
^2*(-(Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c*x]]) + Cosh[(3*a)/b]*CoshIntegral[3*(a/b + ArcSinh[c*x])] + Sinh[
a/b]*SinhIntegral[a/b + ArcSinh[c*x]] - Sinh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c*x])]))/(4*b*c^3) + (e^3*
(2*CoshIntegral[2*(a/b + ArcSinh[c*x])]*Sinh[(2*a)/b] - CoshIntegral[4*(a/b + ArcSinh[c*x])]*Sinh[(4*a)/b] - 2
*Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcSinh[c*x])] + Cosh[(4*a)/b]*SinhIntegral[4*(a/b + ArcSinh[c*x])]))/(8*
b*c^4) - (3*d^2*e*(CoshIntegral[(2*a)/b + 2*ArcSinh[c*x]]*Sinh[(2*a)/b] - Cosh[(2*a)/b]*SinhIntegral[(2*a)/b +
 2*ArcSinh[c*x]]))/(2*b*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.195, size = 394, normalized size = 1. \begin{align*}{\frac{1}{c} \left ( -{\frac{{e}^{3}}{16\,{c}^{3}b}{{\rm e}^{-4\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-4\,{\it Arcsinh} \left ( cx \right ) -4\,{\frac{a}{b}} \right ) }+{\frac{{e}^{3}}{16\,{c}^{3}b}{{\rm e}^{4\,{\frac{a}{b}}}}{\it Ei} \left ( 1,4\,{\it Arcsinh} \left ( cx \right ) +4\,{\frac{a}{b}} \right ) }+{\frac{3\,{d}^{2}e}{4\,bc}{{\rm e}^{2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,2\,{\it Arcsinh} \left ( cx \right ) +2\,{\frac{a}{b}} \right ) }-{\frac{{e}^{3}}{8\,{c}^{3}b}{{\rm e}^{2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,2\,{\it Arcsinh} \left ( cx \right ) +2\,{\frac{a}{b}} \right ) }-{\frac{3\,{d}^{2}e}{4\,bc}{{\rm e}^{-2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-2\,{\it Arcsinh} \left ( cx \right ) -2\,{\frac{a}{b}} \right ) }+{\frac{{e}^{3}}{8\,{c}^{3}b}{{\rm e}^{-2\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-2\,{\it Arcsinh} \left ( cx \right ) -2\,{\frac{a}{b}} \right ) }-{\frac{3\,d{e}^{2}}{8\,{c}^{2}b}{{\rm e}^{-3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-3\,{\it Arcsinh} \left ( cx \right ) -3\,{\frac{a}{b}} \right ) }-{\frac{{d}^{3}}{2\,b}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }+{\frac{3\,d{e}^{2}}{8\,{c}^{2}b}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }-{\frac{{d}^{3}}{2\,b}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) }+{\frac{3\,d{e}^{2}}{8\,{c}^{2}b}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) }-{\frac{3\,d{e}^{2}}{8\,{c}^{2}b}{{\rm e}^{3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,3\,{\it Arcsinh} \left ( cx \right ) +3\,{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(a+b*arcsinh(c*x)),x)

[Out]

1/c*(-1/16/c^3*e^3/b*exp(-4*a/b)*Ei(1,-4*arcsinh(c*x)-4*a/b)+1/16/c^3*e^3/b*exp(4*a/b)*Ei(1,4*arcsinh(c*x)+4*a
/b)+3/4/c*e/b*exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)*d^2-1/8/c^3*e^3/b*exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)-3/
4/c*e/b*exp(-2*a/b)*Ei(1,-2*arcsinh(c*x)-2*a/b)*d^2+1/8/c^3*e^3/b*exp(-2*a/b)*Ei(1,-2*arcsinh(c*x)-2*a/b)-3/8/
c^2*d*e^2/b*exp(-3*a/b)*Ei(1,-3*arcsinh(c*x)-3*a/b)-1/2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)*d^3+3/8/c^2*d/b*exp(
a/b)*Ei(1,arcsinh(c*x)+a/b)*e^2-1/2/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)*d^3+3/8/c^2*d/b*exp(-a/b)*Ei(1,-arcsin
h(c*x)-a/b)*e^2-3/8/c^2*d*e^2/b*exp(3*a/b)*Ei(1,3*arcsinh(c*x)+3*a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{3}}{b \operatorname{arsinh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate((e*x + d)^3/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}}{b \operatorname{arsinh}\left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)/(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{3}}{a + b \operatorname{asinh}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(a+b*asinh(c*x)),x)

[Out]

Integral((d + e*x)**3/(a + b*asinh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{3}}{b \operatorname{arsinh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

integrate((e*x + d)^3/(b*arcsinh(c*x) + a), x)