3.182 \(\int (c e+d e x)^2 \sqrt{a+b \sinh ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=245 \[ -\frac{\sqrt{\pi } \sqrt{b} e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}+\frac{\sqrt{\frac{\pi }{3}} \sqrt{b} e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}+\frac{\sqrt{\pi } \sqrt{b} e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{\frac{\pi }{3}} \sqrt{b} e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}+\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d} \]

[Out]

(e^2*(c + d*x)^3*Sqrt[a + b*ArcSinh[c + d*x]])/(3*d) - (Sqrt[b]*e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c
+ d*x]]/Sqrt[b]])/(16*d) + (Sqrt[b]*e^2*E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt
[b]])/(48*d) + (Sqrt[b]*e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(16*d*E^(a/b)) - (Sqrt[b]*e^2
*Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(48*d*E^((3*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.650181, antiderivative size = 245, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {5865, 12, 5663, 5779, 3312, 3308, 2180, 2204, 2205} \[ -\frac{\sqrt{\pi } \sqrt{b} e^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}+\frac{\sqrt{\frac{\pi }{3}} \sqrt{b} e^2 e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}+\frac{\sqrt{\pi } \sqrt{b} e^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{\frac{\pi }{3}} \sqrt{b} e^2 e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}+\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2*Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(e^2*(c + d*x)^3*Sqrt[a + b*ArcSinh[c + d*x]])/(3*d) - (Sqrt[b]*e^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c
+ d*x]]/Sqrt[b]])/(16*d) + (Sqrt[b]*e^2*E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt
[b]])/(48*d) + (Sqrt[b]*e^2*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(16*d*E^(a/b)) - (Sqrt[b]*e^2
*Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(48*d*E^((3*a)/b))

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5663

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^(m + 1)*(a + b*ArcSinh[c*x])^n)/
(m + 1), x] - Dist[(b*c*n)/(m + 1), Int[(x^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /;
FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int (c e+d e x)^2 \sqrt{a+b \sinh ^{-1}(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int e^2 x^2 \sqrt{a+b \sinh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 \operatorname{Subst}\left (\int x^2 \sqrt{a+b \sinh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{1+x^2} \sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{6 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh ^3(x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{6 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}-\frac{\left (i b e^2\right ) \operatorname{Subst}\left (\int \left (\frac{3 i \sinh (x)}{4 \sqrt{a+b x}}-\frac{i \sinh (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{6 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{24 d}+\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{8 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}+\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{48 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{e^{3 x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{48 d}-\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{16 d}+\frac{\left (b e^2\right ) \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{16 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}+\frac{e^2 \operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{24 d}-\frac{e^2 \operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{24 d}-\frac{e^2 \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{8 d}+\frac{e^2 \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{8 d}\\ &=\frac{e^2 (c+d x)^3 \sqrt{a+b \sinh ^{-1}(c+d x)}}{3 d}-\frac{\sqrt{b} e^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}+\frac{\sqrt{b} e^2 e^{\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}+\frac{\sqrt{b} e^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{16 d}-\frac{\sqrt{b} e^2 e^{-\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{48 d}\\ \end{align*}

Mathematica [A]  time = 0.389586, size = 238, normalized size = 0.97 \[ \frac{e^2 e^{-\frac{3 a}{b}} \sqrt{a+b \sinh ^{-1}(c+d x)} \left (9 e^{\frac{4 a}{b}} \sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{3}{2},\frac{a}{b}+\sinh ^{-1}(c+d x)\right )+\sqrt{3} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \text{Gamma}\left (\frac{3}{2},-\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )-9 e^{\frac{2 a}{b}} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \text{Gamma}\left (\frac{3}{2},-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )-\sqrt{3} e^{\frac{6 a}{b}} \sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}} \text{Gamma}\left (\frac{3}{2},\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )\right )}{72 d \sqrt{-\frac{\left (a+b \sinh ^{-1}(c+d x)\right )^2}{b^2}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(c*e + d*e*x)^2*Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(e^2*Sqrt[a + b*ArcSinh[c + d*x]]*(9*E^((4*a)/b)*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[3/2, a/b + ArcSinh[
c + d*x]] + Sqrt[3]*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[3/2, (-3*(a + b*ArcSinh[c + d*x]))/b] - 9*E^((2*a)/b)*S
qrt[a/b + ArcSinh[c + d*x]]*Gamma[3/2, -((a + b*ArcSinh[c + d*x])/b)] - Sqrt[3]*E^((6*a)/b)*Sqrt[-((a + b*ArcS
inh[c + d*x])/b)]*Gamma[3/2, (3*(a + b*ArcSinh[c + d*x]))/b]))/(72*d*E^((3*a)/b)*Sqrt[-((a + b*ArcSinh[c + d*x
])^2/b^2)])

________________________________________________________________________________________

Maple [F]  time = 0.209, size = 0, normalized size = 0. \begin{align*} \int \left ( dex+ce \right ) ^{2}\sqrt{a+b{\it Arcsinh} \left ( dx+c \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2*(a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int((d*e*x+c*e)^2*(a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (d e x + c e\right )}^{2} \sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2*sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{2} \left (\int c^{2} \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}\, dx + \int d^{2} x^{2} \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}\, dx + \int 2 c d x \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2*(a+b*asinh(d*x+c))**(1/2),x)

[Out]

e**2*(Integral(c**2*sqrt(a + b*asinh(c + d*x)), x) + Integral(d**2*x**2*sqrt(a + b*asinh(c + d*x)), x) + Integ
ral(2*c*d*x*sqrt(a + b*asinh(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (d e x + c e\right )}^{2} \sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2*sqrt(b*arcsinh(d*x + c) + a), x)