3.164 \(\int \frac{(c e+d e x)^2}{(a+b \sinh ^{-1}(c+d x))^2} \, dx\)

Optimal. Leaf size=184 \[ \frac{e^2 \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{4 b^2 d}-\frac{3 e^2 \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{4 b^2 d}-\frac{e^2 \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{4 b^2 d}+\frac{3 e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 \left (a+b \sinh ^{-1}(c+d x)\right )}{b}\right )}{4 b^2 d}-\frac{e^2 (c+d x)^2 \sqrt{(c+d x)^2+1}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )} \]

[Out]

-((e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*d*(a + b*ArcSinh[c + d*x]))) + (e^2*CoshIntegral[(a + b*ArcSinh[c
 + d*x])/b]*Sinh[a/b])/(4*b^2*d) - (3*e^2*CoshIntegral[(3*(a + b*ArcSinh[c + d*x]))/b]*Sinh[(3*a)/b])/(4*b^2*d
) - (e^2*Cosh[a/b]*SinhIntegral[(a + b*ArcSinh[c + d*x])/b])/(4*b^2*d) + (3*e^2*Cosh[(3*a)/b]*SinhIntegral[(3*
(a + b*ArcSinh[c + d*x]))/b])/(4*b^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.28505, antiderivative size = 180, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {5865, 12, 5665, 3303, 3298, 3301} \[ \frac{e^2 \sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )}{4 b^2 d}-\frac{3 e^2 \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c+d x)\right )}{4 b^2 d}-\frac{e^2 \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )}{4 b^2 d}+\frac{3 e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c+d x)\right )}{4 b^2 d}-\frac{e^2 (c+d x)^2 \sqrt{(c+d x)^2+1}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

-((e^2*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(b*d*(a + b*ArcSinh[c + d*x]))) + (e^2*CoshIntegral[a/b + ArcSinh[c
+ d*x]]*Sinh[a/b])/(4*b^2*d) - (3*e^2*CoshIntegral[(3*a)/b + 3*ArcSinh[c + d*x]]*Sinh[(3*a)/b])/(4*b^2*d) - (e
^2*Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c + d*x]])/(4*b^2*d) + (3*e^2*Cosh[(3*a)/b]*SinhIntegral[(3*a)/b + 3*A
rcSinh[c + d*x]])/(4*b^2*d)

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 5665

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 + c^2*x^2]*(a + b*ArcSi
nh[c*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[1/(b*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[(a + b*x)^(n +
1), Sinh[x]^(m - 1)*(m + (m + 1)*Sinh[x]^2), x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0]
 && GeQ[n, -2] && LtQ[n, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{(c e+d e x)^2}{\left (a+b \sinh ^{-1}(c+d x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^2 x^2}{\left (a+b \sinh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=\frac{e^2 \operatorname{Subst}\left (\int \frac{x^2}{\left (a+b \sinh ^{-1}(x)\right )^2} \, dx,x,c+d x\right )}{d}\\ &=-\frac{e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}+\frac{e^2 \operatorname{Subst}\left (\int \left (-\frac{\sinh (x)}{4 (a+b x)}+\frac{3 \sinh (3 x)}{4 (a+b x)}\right ) \, dx,x,\sinh ^{-1}(c+d x)\right )}{b d}\\ &=-\frac{e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}-\frac{e^2 \operatorname{Subst}\left (\int \frac{\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}+\frac{\left (3 e^2\right ) \operatorname{Subst}\left (\int \frac{\sinh (3 x)}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}\\ &=-\frac{e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}-\frac{\left (e^2 \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}+\frac{\left (3 e^2 \cosh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}+\frac{\left (e^2 \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}-\frac{\left (3 e^2 \sinh \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 b d}\\ &=-\frac{e^2 (c+d x)^2 \sqrt{1+(c+d x)^2}}{b d \left (a+b \sinh ^{-1}(c+d x)\right )}+\frac{e^2 \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right ) \sinh \left (\frac{a}{b}\right )}{4 b^2 d}-\frac{3 e^2 \text{Chi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c+d x)\right ) \sinh \left (\frac{3 a}{b}\right )}{4 b^2 d}-\frac{e^2 \cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )}{4 b^2 d}+\frac{3 e^2 \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (\frac{3 a}{b}+3 \sinh ^{-1}(c+d x)\right )}{4 b^2 d}\\ \end{align*}

Mathematica [A]  time = 0.733205, size = 138, normalized size = 0.75 \[ \frac{e^2 \left (\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )-3 \sinh \left (\frac{3 a}{b}\right ) \text{Chi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )\right )-\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )+3 \cosh \left (\frac{3 a}{b}\right ) \text{Shi}\left (3 \left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )\right )-\frac{4 b \sqrt{(c+d x)^2+1} (c+d x)^2}{a+b \sinh ^{-1}(c+d x)}\right )}{4 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2/(a + b*ArcSinh[c + d*x])^2,x]

[Out]

(e^2*((-4*b*(c + d*x)^2*Sqrt[1 + (c + d*x)^2])/(a + b*ArcSinh[c + d*x]) + CoshIntegral[a/b + ArcSinh[c + d*x]]
*Sinh[a/b] - 3*CoshIntegral[3*(a/b + ArcSinh[c + d*x])]*Sinh[(3*a)/b] - Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c
 + d*x]] + 3*Cosh[(3*a)/b]*SinhIntegral[3*(a/b + ArcSinh[c + d*x])]))/(4*b^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.093, size = 342, normalized size = 1.9 \begin{align*}{\frac{1}{d} \left ({\frac{{e}^{2}}{8\,b \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) } \left ( 4\, \left ( dx+c \right ) ^{3}-4\, \left ( dx+c \right ) ^{2}\sqrt{1+ \left ( dx+c \right ) ^{2}}+3\,dx+3\,c-\sqrt{1+ \left ( dx+c \right ) ^{2}} \right ) }+{\frac{3\,{e}^{2}}{8\,{b}^{2}}{{\rm e}^{3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,3\,{\it Arcsinh} \left ( dx+c \right ) +3\,{\frac{a}{b}} \right ) }-{\frac{{e}^{2}}{8\,b \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) } \left ( -\sqrt{1+ \left ( dx+c \right ) ^{2}}+dx+c \right ) }-{\frac{{e}^{2}}{8\,{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( dx+c \right ) +{\frac{a}{b}} \right ) }+{\frac{{e}^{2}}{8\,b \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) } \left ( dx+c+\sqrt{1+ \left ( dx+c \right ) ^{2}} \right ) }+{\frac{{e}^{2}}{8\,{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( dx+c \right ) -{\frac{a}{b}} \right ) }-{\frac{{e}^{2}}{8\,b \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) } \left ( 4\, \left ( dx+c \right ) ^{3}+3\,dx+3\,c+4\, \left ( dx+c \right ) ^{2}\sqrt{1+ \left ( dx+c \right ) ^{2}}+\sqrt{1+ \left ( dx+c \right ) ^{2}} \right ) }-{\frac{3\,{e}^{2}}{8\,{b}^{2}}{{\rm e}^{-3\,{\frac{a}{b}}}}{\it Ei} \left ( 1,-3\,{\it Arcsinh} \left ( dx+c \right ) -3\,{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^2,x)

[Out]

1/d*(1/8*(4*(d*x+c)^3-4*(d*x+c)^2*(1+(d*x+c)^2)^(1/2)+3*d*x+3*c-(1+(d*x+c)^2)^(1/2))*e^2/b/(a+b*arcsinh(d*x+c)
)+3/8*e^2/b^2*exp(3*a/b)*Ei(1,3*arcsinh(d*x+c)+3*a/b)-1/8*(-(1+(d*x+c)^2)^(1/2)+d*x+c)*e^2/b/(a+b*arcsinh(d*x+
c))-1/8*e^2/b^2*exp(a/b)*Ei(1,arcsinh(d*x+c)+a/b)+1/8*e^2/b*(d*x+c+(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))+1
/8*e^2/b^2*exp(-a/b)*Ei(1,-arcsinh(d*x+c)-a/b)-1/8*e^2/b*(4*(d*x+c)^3+3*d*x+3*c+4*(d*x+c)^2*(1+(d*x+c)^2)^(1/2
)+(1+(d*x+c)^2)^(1/2))/(a+b*arcsinh(d*x+c))-3/8*e^2/b^2*exp(-3*a/b)*Ei(1,-3*arcsinh(d*x+c)-3*a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^2,x, algorithm="maxima")

[Out]

-(d^5*e^2*x^5 + 5*c*d^4*e^2*x^4 + c^5*e^2 + c^3*e^2 + (10*c^2*d^3*e^2 + d^3*e^2)*x^3 + (10*c^3*d^2*e^2 + 3*c*d
^2*e^2)*x^2 + (5*c^4*d*e^2 + 3*c^2*d*e^2)*x + (d^4*e^2*x^4 + 4*c*d^3*e^2*x^3 + c^4*e^2 + c^2*e^2 + (6*c^2*d^2*
e^2 + d^2*e^2)*x^2 + 2*(2*c^3*d*e^2 + c*d*e^2)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^3*x^2 + 2*a*b*c*d^
2*x + (c^2*d + d)*a*b + (b^2*d^3*x^2 + 2*b^2*c*d^2*x + (c^2*d + d)*b^2 + (b^2*d^2*x + b^2*c*d)*sqrt(d^2*x^2 +
2*c*d*x + c^2 + 1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + (a*b*d^2*x + a*b*c*d)*sqrt(d^2*x^2 + 2*
c*d*x + c^2 + 1)) + integrate((3*d^6*e^2*x^6 + 18*c*d^5*e^2*x^5 + 3*c^6*e^2 + 6*c^4*e^2 + 3*(15*c^2*d^4*e^2 +
2*d^4*e^2)*x^4 + 3*c^2*e^2 + 12*(5*c^3*d^3*e^2 + 2*c*d^3*e^2)*x^3 + 3*(15*c^4*d^2*e^2 + 12*c^2*d^2*e^2 + d^2*e
^2)*x^2 + (3*d^4*e^2*x^4 + 12*c*d^3*e^2*x^3 + 3*c^4*e^2 + c^2*e^2 + (18*c^2*d^2*e^2 + d^2*e^2)*x^2 + 2*(6*c^3*
d*e^2 + c*d*e^2)*x)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + 6*(3*c^5*d*e^2 + 4*c^3*d*e^2 + c*d*e^2)*x + (6*d^5*e^2*x^5
 + 30*c*d^4*e^2*x^4 + 6*c^5*e^2 + 7*c^3*e^2 + (60*c^2*d^3*e^2 + 7*d^3*e^2)*x^3 + 2*c*e^2 + 3*(20*c^3*d^2*e^2 +
 7*c*d^2*e^2)*x^2 + (30*c^4*d*e^2 + 21*c^2*d*e^2 + 2*d*e^2)*x)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1))/(a*b*d^4*x^4
 + 4*a*b*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2)*a*b*x^2 + 4*(c^3*d + c*d)*a*b*x + (c^4 + 2*c^2 + 1)*a*b + (a*b*d^2*x^
2 + 2*a*b*c*d*x + a*b*c^2)*(d^2*x^2 + 2*c*d*x + c^2 + 1) + (b^2*d^4*x^4 + 4*b^2*c*d^3*x^3 + 2*(3*c^2*d^2 + d^2
)*b^2*x^2 + 4*(c^3*d + c*d)*b^2*x + (c^4 + 2*c^2 + 1)*b^2 + (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*(d^2*x^2 + 2
*c*d*x + c^2 + 1) + 2*(b^2*d^3*x^3 + 3*b^2*c*d^2*x^2 + (3*c^2*d + d)*b^2*x + (c^3 + c)*b^2)*sqrt(d^2*x^2 + 2*c
*d*x + c^2 + 1))*log(d*x + c + sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)) + 2*(a*b*d^3*x^3 + 3*a*b*c*d^2*x^2 + (3*c^2*
d + d)*a*b*x + (c^3 + c)*a*b)*sqrt(d^2*x^2 + 2*c*d*x + c^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{d^{2} e^{2} x^{2} + 2 \, c d e^{2} x + c^{2} e^{2}}{b^{2} \operatorname{arsinh}\left (d x + c\right )^{2} + 2 \, a b \operatorname{arsinh}\left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((d^2*e^2*x^2 + 2*c*d*e^2*x + c^2*e^2)/(b^2*arcsinh(d*x + c)^2 + 2*a*b*arcsinh(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} e^{2} \left (\int \frac{c^{2}}{a^{2} + 2 a b \operatorname{asinh}{\left (c + d x \right )} + b^{2} \operatorname{asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac{d^{2} x^{2}}{a^{2} + 2 a b \operatorname{asinh}{\left (c + d x \right )} + b^{2} \operatorname{asinh}^{2}{\left (c + d x \right )}}\, dx + \int \frac{2 c d x}{a^{2} + 2 a b \operatorname{asinh}{\left (c + d x \right )} + b^{2} \operatorname{asinh}^{2}{\left (c + d x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2/(a+b*asinh(d*x+c))**2,x)

[Out]

e**2*(Integral(c**2/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + Integral(d**2*x**2/(a**2 + 2*
a*b*asinh(c + d*x) + b**2*asinh(c + d*x)**2), x) + Integral(2*c*d*x/(a**2 + 2*a*b*asinh(c + d*x) + b**2*asinh(
c + d*x)**2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d e x + c e\right )}^{2}}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsinh(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((d*e*x + c*e)^2/(b*arcsinh(d*x + c) + a)^2, x)