3.160 \(\int \frac{1}{a+b \sinh ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=58 \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d} \]

[Out]

(Cosh[a/b]*CoshIntegral[(a + b*ArcSinh[c + d*x])/b])/(b*d) - (Sinh[a/b]*SinhIntegral[(a + b*ArcSinh[c + d*x])/
b])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0889073, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.417, Rules used = {5863, 5657, 3303, 3298, 3301} \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c + d*x])^(-1),x]

[Out]

(Cosh[a/b]*CoshIntegral[(a + b*ArcSinh[c + d*x])/b])/(b*d) - (Sinh[a/b]*SinhIntegral[(a + b*ArcSinh[c + d*x])/
b])/(b*d)

Rule 5863

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 5657

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cosh[a/b - x/b], x], x,
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{a+b \sinh ^{-1}(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{a+b \sinh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}-\frac{x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c+d x)\right )}{b d}\\ &=\frac{\cosh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c+d x)\right )}{b d}-\frac{\sinh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sinh ^{-1}(c+d x)\right )}{b d}\\ &=\frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{b d}\\ \end{align*}

Mathematica [A]  time = 0.0215911, size = 49, normalized size = 0.84 \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )-\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c+d x)\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c + d*x])^(-1),x]

[Out]

(Cosh[a/b]*CoshIntegral[a/b + ArcSinh[c + d*x]] - Sinh[a/b]*SinhIntegral[a/b + ArcSinh[c + d*x]])/(b*d)

________________________________________________________________________________________

Maple [A]  time = 0.027, size = 60, normalized size = 1. \begin{align*}{\frac{1}{d} \left ( -{\frac{1}{2\,b}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( dx+c \right ) +{\frac{a}{b}} \right ) }-{\frac{1}{2\,b}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( dx+c \right ) -{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsinh(d*x+c)),x)

[Out]

1/d*(-1/2/b*exp(a/b)*Ei(1,arcsinh(d*x+c)+a/b)-1/2/b*exp(-a/b)*Ei(1,-arcsinh(d*x+c)-a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b \operatorname{arsinh}\left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c)),x, algorithm="fricas")

[Out]

integral(1/(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{a + b \operatorname{asinh}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asinh(d*x+c)),x)

[Out]

Integral(1/(a + b*asinh(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/(b*arcsinh(d*x + c) + a), x)