3.113 \(\int \frac{1}{(a+b \sinh ^{-1}(c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=195 \[ -\frac{4 \sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{4 \sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{(c+d x)^2+1}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{2 \sqrt{(c+d x)^2+1}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

[Out]

(-2*Sqrt[1 + (c + d*x)^2])/(5*b*d*(a + b*ArcSinh[c + d*x])^(5/2)) - (4*(c + d*x))/(15*b^2*d*(a + b*ArcSinh[c +
 d*x])^(3/2)) - (8*Sqrt[1 + (c + d*x)^2])/(15*b^3*d*Sqrt[a + b*ArcSinh[c + d*x]]) - (4*E^(a/b)*Sqrt[Pi]*Erf[Sq
rt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d) + (4*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/
(15*b^(7/2)*d*E^(a/b))

________________________________________________________________________________________

Rubi [A]  time = 0.41112, antiderivative size = 195, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.571, Rules used = {5863, 5655, 5774, 5779, 3308, 2180, 2204, 2205} \[ -\frac{4 \sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{4 \sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{(c+d x)^2+1}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{2 \sqrt{(c+d x)^2+1}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c + d*x])^(-7/2),x]

[Out]

(-2*Sqrt[1 + (c + d*x)^2])/(5*b*d*(a + b*ArcSinh[c + d*x])^(5/2)) - (4*(c + d*x))/(15*b^2*d*(a + b*ArcSinh[c +
 d*x])^(3/2)) - (8*Sqrt[1 + (c + d*x)^2])/(15*b^3*d*Sqrt[a + b*ArcSinh[c + d*x]]) - (4*E^(a/b)*Sqrt[Pi]*Erf[Sq
rt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(15*b^(7/2)*d) + (4*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/
(15*b^(7/2)*d*E^(a/b))

Rule 5863

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 5655

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^(n + 1
))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcSinh[c*x])^(n + 1))/Sqrt[1 + c^2*x^2], x], x] /; F
reeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5774

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[((f*x)^m*(a + b*ArcSinh[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x
)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -
1] && GtQ[d, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \sinh ^{-1}(c+d x)\right )^{7/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (a+b \sinh ^{-1}(x)\right )^{7/2}} \, dx,x,c+d x\right )}{d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}+\frac{2 \operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2} \left (a+b \sinh ^{-1}(x)\right )^{5/2}} \, dx,x,c+d x\right )}{5 b d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}+\frac{4 \operatorname{Subst}\left (\int \frac{1}{\left (a+b \sinh ^{-1}(x)\right )^{3/2}} \, dx,x,c+d x\right )}{15 b^2 d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{8 \operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2} \sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{15 b^3 d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}+\frac{8 \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{4 \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}+\frac{4 \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{15 b^3 d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{8 \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d}+\frac{8 \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{15 b^4 d}\\ &=-\frac{2 \sqrt{1+(c+d x)^2}}{5 b d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}}-\frac{4 (c+d x)}{15 b^2 d \left (a+b \sinh ^{-1}(c+d x)\right )^{3/2}}-\frac{8 \sqrt{1+(c+d x)^2}}{15 b^3 d \sqrt{a+b \sinh ^{-1}(c+d x)}}-\frac{4 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}+\frac{4 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{15 b^{7/2} d}\\ \end{align*}

Mathematica [A]  time = 0.112945, size = 238, normalized size = 1.22 \[ \frac{8 e^{a/b} \sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (a+b \sinh ^{-1}(c+d x)\right )^2 \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\sinh ^{-1}(c+d x)\right )-4 e^{-\frac{a}{b}} \left (a+b \sinh ^{-1}(c+d x)\right ) \left (2 b \left (-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )^{3/2} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )+e^{\frac{a}{b}+\sinh ^{-1}(c+d x)} \left (2 a+2 b \sinh ^{-1}(c+d x)+b\right )\right )-2 e^{-\sinh ^{-1}(c+d x)} \left (4 a^2+2 a b \left (4 \sinh ^{-1}(c+d x)-1\right )+b^2 \left (4 \sinh ^{-1}(c+d x)^2-2 \sinh ^{-1}(c+d x)+3\right )\right )-6 b^2 e^{\sinh ^{-1}(c+d x)}}{30 b^3 d \left (a+b \sinh ^{-1}(c+d x)\right )^{5/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSinh[c + d*x])^(-7/2),x]

[Out]

(-6*b^2*E^ArcSinh[c + d*x] - (2*(4*a^2 + 2*a*b*(-1 + 4*ArcSinh[c + d*x]) + b^2*(3 - 2*ArcSinh[c + d*x] + 4*Arc
Sinh[c + d*x]^2)))/E^ArcSinh[c + d*x] + 8*E^(a/b)*Sqrt[a/b + ArcSinh[c + d*x]]*(a + b*ArcSinh[c + d*x])^2*Gamm
a[1/2, a/b + ArcSinh[c + d*x]] - (4*(a + b*ArcSinh[c + d*x])*(E^(a/b + ArcSinh[c + d*x])*(2*a + b + 2*b*ArcSin
h[c + d*x]) + 2*b*(-((a + b*ArcSinh[c + d*x])/b))^(3/2)*Gamma[1/2, -((a + b*ArcSinh[c + d*x])/b)]))/E^(a/b))/(
30*b^3*d*(a + b*ArcSinh[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.091, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b{\it Arcsinh} \left ( dx+c \right ) \right ) ^{-{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arcsinh(d*x+c))^(7/2),x)

[Out]

int(1/(a+b*arcsinh(d*x+c))^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(-7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*asinh(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arsinh}\left (d x + c\right ) + a\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arcsinh(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(d*x + c) + a)^(-7/2), x)