3.105 \(\int \frac{x^2}{\sqrt{a+b \sinh ^{-1}(c+d x)}} \, dx\)

Optimal. Leaf size=411 \[ \frac{\sqrt{\pi } c^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\sqrt{\pi } c^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{2}} c e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{3}} e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}-\frac{\sqrt{\frac{\pi }{2}} c e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{3}} e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3} \]

[Out]

-(E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(8*Sqrt[b]*d^3) + (c^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt
[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(2*Sqrt[b]*d^3) + (c*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh
[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3) + (E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqr
t[b]])/(8*Sqrt[b]*d^3) - (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(8*Sqrt[b]*d^3*E^(a/b)) + (c^2*
Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(2*Sqrt[b]*d^3*E^(a/b)) - (c*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqr
t[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3*E^((2*a)/b)) + (Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSin
h[c + d*x]])/Sqrt[b]])/(8*Sqrt[b]*d^3*E^((3*a)/b))

________________________________________________________________________________________

Rubi [A]  time = 0.856515, antiderivative size = 411, normalized size of antiderivative = 1., number of steps used = 20, number of rules used = 9, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5865, 5805, 6741, 6742, 5299, 2205, 2204, 5298, 5618} \[ \frac{\sqrt{\pi } c^2 e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\sqrt{\pi } c^2 e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{2}} c e^{\frac{2 a}{b}} \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{3}} e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}-\frac{\sqrt{\frac{\pi }{2}} c e^{-\frac{2 a}{b}} \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{\sqrt{\frac{\pi }{3}} e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

-(E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(8*Sqrt[b]*d^3) + (c^2*E^(a/b)*Sqrt[Pi]*Erf[Sqrt
[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(2*Sqrt[b]*d^3) + (c*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*ArcSinh
[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3) + (E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqr
t[b]])/(8*Sqrt[b]*d^3) - (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(8*Sqrt[b]*d^3*E^(a/b)) + (c^2*
Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(2*Sqrt[b]*d^3*E^(a/b)) - (c*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqr
t[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d^3*E^((2*a)/b)) + (Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSin
h[c + d*x]])/Sqrt[b]])/(8*Sqrt[b]*d^3*E^((3*a)/b))

Rule 5865

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + (f*x)/d)^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
]

Rule 5805

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst
[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[m, 0]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 5299

Int[Cosh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] + Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 5298

Int[Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Dist[1/2, Int[E^(c + d*x^n), x], x] - Dist[1/2, Int[E^(-c - d*
x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]

Rule 5618

Int[Cosh[w_]^(q_.)*Sinh[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[Sinh[v]^p*Cosh[w]^q, x], x] /; IGtQ[p, 0]
 && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/
w], x]))

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+b \sinh ^{-1}(c+d x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (-\frac{c}{d}+\frac{x}{d}\right )^2}{\sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\cosh (x) \left (-\frac{c}{d}+\frac{\sinh (x)}{d}\right )^2}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{d}\\ &=\frac{2 \operatorname{Subst}\left (\int \cosh \left (\frac{a-x^2}{b}\right ) \left (c+\sinh \left (\frac{a-x^2}{b}\right )\right )^2 \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac{2 \operatorname{Subst}\left (\int \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right ) \left (c+\sinh \left (\frac{a-x^2}{b}\right )\right )^2 \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac{2 \operatorname{Subst}\left (\int \left (c^2 \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right )+c \sinh \left (\frac{2 a}{b}-\frac{2 x^2}{b}\right )+\cosh \left (\frac{a}{b}-\frac{x^2}{b}\right ) \sinh ^2\left (\frac{a}{b}-\frac{x^2}{b}\right )\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac{2 \operatorname{Subst}\left (\int \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right ) \sinh ^2\left (\frac{a}{b}-\frac{x^2}{b}\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}+\frac{(2 c) \operatorname{Subst}\left (\int \sinh \left (\frac{2 a}{b}-\frac{2 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}+\frac{\left (2 c^2\right ) \operatorname{Subst}\left (\int \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac{2 \operatorname{Subst}\left (\int \left (\frac{1}{4} \cosh \left (\frac{3 a}{b}-\frac{3 x^2}{b}\right )-\frac{1}{4} \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right )\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}+\frac{c \operatorname{Subst}\left (\int e^{\frac{2 a}{b}-\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}-\frac{c \operatorname{Subst}\left (\int e^{-\frac{2 a}{b}+\frac{2 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}+\frac{c^2 \operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}+\frac{c^2 \operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{b d^3}\\ &=\frac{c^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{c e^{\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{c^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{c e^{-\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\operatorname{Subst}\left (\int \cosh \left (\frac{3 a}{b}-\frac{3 x^2}{b}\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b d^3}-\frac{\operatorname{Subst}\left (\int \cosh \left (\frac{a}{b}-\frac{x^2}{b}\right ) \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 b d^3}\\ &=\frac{c^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{c e^{\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{c^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{c e^{-\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{\operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d^3}-\frac{\operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d^3}-\frac{\operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d^3}+\frac{\operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{4 b d^3}\\ &=-\frac{e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{c^2 e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{c e^{\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{e^{\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}-\frac{e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}+\frac{c^2 e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}-\frac{c e^{-\frac{2 a}{b}} \sqrt{\frac{\pi }{2}} \text{erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{2 \sqrt{b} d^3}+\frac{e^{-\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{8 \sqrt{b} d^3}\\ \end{align*}

Mathematica [A]  time = 1.04065, size = 471, normalized size = 1.15 \[ \frac{\sqrt{\pi } \left (3 \left (4 c^2-1\right ) \left (\sinh \left (\frac{a}{b}\right )+\cosh \left (\frac{a}{b}\right )\right ) \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )-12 c^2 \sinh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+12 c^2 \cosh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+\sqrt{3} \sinh \left (\frac{3 a}{b}\right ) \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+6 \sqrt{2} c \left (\sinh \left (\frac{2 a}{b}\right )+\cosh \left (\frac{2 a}{b}\right )\right ) \text{Erf}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+\sqrt{3} \cosh \left (\frac{3 a}{b}\right ) \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+6 \sqrt{2} c \sinh \left (\frac{2 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+3 \sinh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )-\sqrt{3} \sinh \left (\frac{3 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )-6 \sqrt{2} c \cosh \left (\frac{2 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{2} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )-3 \cosh \left (\frac{a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )+\sqrt{3} \cosh \left (\frac{3 a}{b}\right ) \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )\right )}{24 \sqrt{b} d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(Sqrt[Pi]*(Sqrt[3]*Cosh[(3*a)/b]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]] - 3*Cosh[a/b]*Erfi[Sqrt[a
 + b*ArcSinh[c + d*x]]/Sqrt[b]] + 12*c^2*Cosh[a/b]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]] - 6*Sqrt[2]*c*Co
sh[(2*a)/b]*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]] + Sqrt[3]*Cosh[(3*a)/b]*Erfi[(Sqrt[3]*Sqrt[a
+ b*ArcSinh[c + d*x]])/Sqrt[b]] + 3*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]*Sinh[a/b] - 12*c^2*Erfi[Sqrt[a
+ b*ArcSinh[c + d*x]]/Sqrt[b]]*Sinh[a/b] + 3*(-1 + 4*c^2)*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]*(Cosh[a/b]
 + Sinh[a/b]) + 6*Sqrt[2]*c*Erfi[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*Sinh[(2*a)/b] + 6*Sqrt[2]*c*E
rf[(Sqrt[2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*(Cosh[(2*a)/b] + Sinh[(2*a)/b]) + Sqrt[3]*Erf[(Sqrt[3]*Sqrt
[a + b*ArcSinh[c + d*x]])/Sqrt[b]]*Sinh[(3*a)/b] - Sqrt[3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]
]*Sinh[(3*a)/b]))/(24*Sqrt[b]*d^3)

________________________________________________________________________________________

Maple [F]  time = 0.264, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2}{\frac{1}{\sqrt{a+b{\it Arcsinh} \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int(x^2/(a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*asinh(d*x+c))**(1/2),x)

[Out]

Integral(x**2/sqrt(a + b*asinh(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(b*arcsinh(d*x + c) + a), x)