3.100 \(\int \sqrt{a+b \sinh ^{-1}(c+d x)} \, dx\)

Optimal. Leaf size=115 \[ \frac{\sqrt{\pi } \sqrt{b} e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}-\frac{\sqrt{\pi } \sqrt{b} e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}+\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d} \]

[Out]

((c + d*x)*Sqrt[a + b*ArcSinh[c + d*x]])/d + (Sqrt[b]*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b
]])/(4*d) - (Sqrt[b]*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*d*E^(a/b))

________________________________________________________________________________________

Rubi [A]  time = 0.24912, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5863, 5653, 5779, 3308, 2180, 2204, 2205} \[ \frac{\sqrt{\pi } \sqrt{b} e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}-\frac{\sqrt{\pi } \sqrt{b} e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}+\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

((c + d*x)*Sqrt[a + b*ArcSinh[c + d*x]])/d + (Sqrt[b]*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b
]])/(4*d) - (Sqrt[b]*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]])/(4*d*E^(a/b))

Rule 5863

Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcSinh[x])^n, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{a+b \sinh ^{-1}(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \sqrt{a+b \sinh ^{-1}(x)} \, dx,x,c+d x\right )}{d}\\ &=\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d}-\frac{b \operatorname{Subst}\left (\int \frac{x}{\sqrt{1+x^2} \sqrt{a+b \sinh ^{-1}(x)}} \, dx,x,c+d x\right )}{2 d}\\ &=\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d}-\frac{b \operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{2 d}\\ &=\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d}+\frac{b \operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}-\frac{b \operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\sinh ^{-1}(c+d x)\right )}{4 d}\\ &=\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 d}-\frac{\operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^{-1}(c+d x)}\right )}{2 d}\\ &=\frac{(c+d x) \sqrt{a+b \sinh ^{-1}(c+d x)}}{d}+\frac{\sqrt{b} e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}-\frac{\sqrt{b} e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \sinh ^{-1}(c+d x)}}{\sqrt{b}}\right )}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.0737752, size = 111, normalized size = 0.97 \[ \frac{e^{-\frac{a}{b}} \sqrt{a+b \sinh ^{-1}(c+d x)} \left (\frac{\text{Gamma}\left (\frac{3}{2},-\frac{a+b \sinh ^{-1}(c+d x)}{b}\right )}{\sqrt{-\frac{a+b \sinh ^{-1}(c+d x)}{b}}}-\frac{e^{\frac{2 a}{b}} \text{Gamma}\left (\frac{3}{2},\frac{a}{b}+\sinh ^{-1}(c+d x)\right )}{\sqrt{\frac{a}{b}+\sinh ^{-1}(c+d x)}}\right )}{2 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*ArcSinh[c + d*x]],x]

[Out]

(Sqrt[a + b*ArcSinh[c + d*x]]*(-((E^((2*a)/b)*Gamma[3/2, a/b + ArcSinh[c + d*x]])/Sqrt[a/b + ArcSinh[c + d*x]]
) + Gamma[3/2, -((a + b*ArcSinh[c + d*x])/b)]/Sqrt[-((a + b*ArcSinh[c + d*x])/b)]))/(2*d*E^(a/b))

________________________________________________________________________________________

Maple [F]  time = 0.079, size = 0, normalized size = 0. \begin{align*} \int \sqrt{a+b{\it Arcsinh} \left ( dx+c \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(d*x+c))^(1/2),x)

[Out]

int((a+b*arcsinh(d*x+c))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*arcsinh(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \operatorname{asinh}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*asinh(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \operatorname{arsinh}\left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*arcsinh(d*x + c) + a), x)