3.833 $$\int \frac{\cosh (x)}{a+b \cosh (x)+c \cosh ^2(x)} \, dx$$

Optimal. Leaf size=230 $\frac{2 \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}$

[Out]

(2*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4
*a*c]]])/(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) + (2*(1 + b/Sqrt[b^2 - 4*a*c])*
ArcTanh[(Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b - 2*c + Sqrt
[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.58312, antiderivative size = 230, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.176, Rules used = {3257, 2659, 208} $\frac{2 \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[x]/(a + b*Cosh[x] + c*Cosh[x]^2),x]

[Out]

(2*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4
*a*c]]])/(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) + (2*(1 + b/Sqrt[b^2 - 4*a*c])*
ArcTanh[(Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b - 2*c + Sqrt
[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

Rule 3257

Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cosh (x)}{a+b \cosh (x)+c \cosh ^2(x)} \, dx &=\int \left (\frac{1-\frac{b}{\sqrt{b^2-4 a c}}}{b-\sqrt{b^2-4 a c}+2 c \cosh (x)}+\frac{1+\frac{b}{\sqrt{b^2-4 a c}}}{b+\sqrt{b^2-4 a c}+2 c \cosh (x)}\right ) \, dx\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b-\sqrt{b^2-4 a c}+2 c \cosh (x)} \, dx+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b+\sqrt{b^2-4 a c}+2 c \cosh (x)} \, dx\\ &=\left (2 \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c-\sqrt{b^2-4 a c}-\left (b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )+\left (2 \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c+\sqrt{b^2-4 a c}-\left (b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )\\ &=\frac{2 \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \tanh \left (\frac{x}{2}\right )}{\sqrt{b+2 c-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}+\frac{2 \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \tanh \left (\frac{x}{2}\right )}{\sqrt{b+2 c+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.466472, size = 227, normalized size = 0.99 $\frac{\sqrt{2} \left (\frac{\left (\sqrt{b^2-4 a c}-b\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b+2 c\right )}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}-\frac{\left (\sqrt{b^2-4 a c}+b\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b-2 c\right )}{\sqrt{-2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{-b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}\right )}{\sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[x]/(a + b*Cosh[x] + c*Cosh[x]^2),x]

[Out]

(Sqrt[2]*(-(((b + Sqrt[b^2 - 4*a*c])*ArcTan[((b - 2*c + Sqrt[b^2 - 4*a*c])*Tanh[x/2])/Sqrt[-2*b^2 + 4*c*(a + c
) - 2*b*Sqrt[b^2 - 4*a*c]]])/Sqrt[-b^2 + 2*c*(a + c) - b*Sqrt[b^2 - 4*a*c]]) + ((-b + Sqrt[b^2 - 4*a*c])*ArcTa
n[((-b + 2*c + Sqrt[b^2 - 4*a*c])*Tanh[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) + 2*b*Sqrt[b^2 - 4*a*c]]])/Sqrt[-b^2 +
2*c*(a + c) + b*Sqrt[b^2 - 4*a*c]]))/Sqrt[b^2 - 4*a*c]

________________________________________________________________________________________

Maple [B]  time = 0.03, size = 1262, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)/(a+b*cosh(x)+c*cosh(x)^2),x)

[Out]

-2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^
2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2+3*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arct
an((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b+a/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c)
)^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))+a/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-
c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))+2/(-4*a*c+b^2)^(1/2)/
(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c
))^(1/2))*a^2-3*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/
2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b-1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c
))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^2-b/(a-b+c)/(((-4*a*c+b^2)^(1/
2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))-b/(a-b+c)/(((-4*a*
c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))+1/(-4*
a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1
/2)+a-c)*(a-b+c))^(1/2))*b^2-2*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a
-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*c+b/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2
)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*c+c/(a-b+c)/(((-4*a
*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))+c/(a-b+
c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1
/2))+2*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-
4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*c-b/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*
arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (x\right )}{c \cosh \left (x\right )^{2} + b \cosh \left (x\right ) + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="maxima")

[Out]

integrate(cosh(x)/(c*cosh(x)^2 + b*cosh(x) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.79751, size = 7015, normalized size = 30.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="fricas")

[Out]

-1/2*sqrt(2)*sqrt((2*a^2 - b^2 + 2*a*c + (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)
*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a
^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3
- 3*a*b^2)*c))*log(4*a*b*c*cosh(x) + 4*a*b*c*sinh(x) + 2*a*b^2 + sqrt(2)*(a*b^3 - 4*a*b*c^2 - (4*a^2*b - b^3)
*c - (a^3*b^3 - a*b^5 + 4*a*b*c^4 + (4*a^2*b - b^3)*c^3 - (4*a^3*b + 5*a*b^3)*c^2 - (4*a^4*b - 5*a^2*b^3 - b^5
)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 -
11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))*sqrt((2*a^2 - b^2 + 2*a*c + (a^2*b^2 - b^4 - 4*a*c^
3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*
c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2
- b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)) - 2*(a^3*b^2 - a*b^4 - 4*a^2*c^3 - (8*a^3 - a*b^
2)*c^2 - 2*(2*a^4 - 3*a^2*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a
^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))) + 1/2*sqrt(2)*sqrt((2*
a^2 - b^2 + 2*a*c + (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 -
2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4
*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))*log(4
*a*b*c*cosh(x) + 4*a*b*c*sinh(x) + 2*a*b^2 - sqrt(2)*(a*b^3 - 4*a*b*c^2 - (4*a^2*b - b^3)*c - (a^3*b^3 - a*b^5
+ 4*a*b*c^4 + (4*a^2*b - b^3)*c^3 - (4*a^3*b + 5*a*b^3)*c^2 - (4*a^4*b - 5*a^2*b^3 - b^5)*c)*sqrt(b^2/(a^4*b^
2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2
- 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))*sqrt((2*a^2 - b^2 + 2*a*c + (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2
- 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b
^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*
a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)) - 2*(a^3*b^2 - a*b^4 - 4*a^2*c^3 - (8*a^3 - a*b^2)*c^2 - 2*(2*a^4 - 3
*a^2*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(
8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))) - 1/2*sqrt(2)*sqrt((2*a^2 - b^2 + 2*a*c - (
a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a
*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2
*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))*log(4*a*b*c*cosh(x) + 4*a*
b*c*sinh(x) + 2*a*b^2 + sqrt(2)*(a*b^3 - 4*a*b*c^2 - (4*a^2*b - b^3)*c + (a^3*b^3 - a*b^5 + 4*a*b*c^4 + (4*a^2
*b - b^3)*c^3 - (4*a^3*b + 5*a*b^3)*c^2 - (4*a^4*b - 5*a^2*b^3 - b^5)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 -
4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2
+ 2*a*b^4)*c)))*sqrt((2*a^2 - b^2 + 2*a*c - (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2
)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 -
11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2
*a^3 - 3*a*b^2)*c)) + 2*(a^3*b^2 - a*b^4 - 4*a^2*c^3 - (8*a^3 - a*b^2)*c^2 - 2*(2*a^4 - 3*a^2*b^2)*c)*sqrt(b^2
/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 +
b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))) + 1/2*sqrt(2)*sqrt((2*a^2 - b^2 + 2*a*c - (a^2*b^2 - b^4 - 4*a*c
^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)
*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2
- b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))*log(4*a*b*c*cosh(x) + 4*a*b*c*sinh(x) + 2*a*b^2
- sqrt(2)*(a*b^3 - 4*a*b*c^2 - (4*a^2*b - b^3)*c + (a^3*b^3 - a*b^5 + 4*a*b*c^4 + (4*a^2*b - b^3)*c^3 - (4*a^
3*b + 5*a*b^3)*c^2 - (4*a^4*b - 5*a^2*b^3 - b^5)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 -
b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))*sqrt
((2*a^2 - b^2 + 2*a*c - (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^
2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2
- 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)) +
2*(a^3*b^2 - a*b^4 - 4*a^2*c^3 - (8*a^3 - a*b^2)*c^2 - 2*(2*a^4 - 3*a^2*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4
+ b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3
*a^3*b^2 + 2*a*b^4)*c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)/(a+b*cosh(x)+c*cosh(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (x\right )}{c \cosh \left (x\right )^{2} + b \cosh \left (x\right ) + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="giac")

[Out]

integrate(cosh(x)/(c*cosh(x)^2 + b*cosh(x) + a), x)