### 3.589 $$\int \frac{1}{(a \cosh (x)+b \sinh (x))^5} \, dx$$

Optimal. Leaf size=112 $\frac{3 (a \sinh (x)+b \cosh (x))}{8 \left (a^2-b^2\right )^2 (a \cosh (x)+b \sinh (x))^2}+\frac{a \sinh (x)+b \cosh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 \tan ^{-1}\left (\frac{a \sinh (x)+b \cosh (x)}{\sqrt{a^2-b^2}}\right )}{8 \left (a^2-b^2\right )^{5/2}}$

[Out]

(3*ArcTan[(b*Cosh[x] + a*Sinh[x])/Sqrt[a^2 - b^2]])/(8*(a^2 - b^2)^(5/2)) + (b*Cosh[x] + a*Sinh[x])/(4*(a^2 -
b^2)*(a*Cosh[x] + b*Sinh[x])^4) + (3*(b*Cosh[x] + a*Sinh[x]))/(8*(a^2 - b^2)^2*(a*Cosh[x] + b*Sinh[x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0686614, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 11, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.273, Rules used = {3076, 3074, 206} $\frac{3 (a \sinh (x)+b \cosh (x))}{8 \left (a^2-b^2\right )^2 (a \cosh (x)+b \sinh (x))^2}+\frac{a \sinh (x)+b \cosh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 \tan ^{-1}\left (\frac{a \sinh (x)+b \cosh (x)}{\sqrt{a^2-b^2}}\right )}{8 \left (a^2-b^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a*Cosh[x] + b*Sinh[x])^(-5),x]

[Out]

(3*ArcTan[(b*Cosh[x] + a*Sinh[x])/Sqrt[a^2 - b^2]])/(8*(a^2 - b^2)^(5/2)) + (b*Cosh[x] + a*Sinh[x])/(4*(a^2 -
b^2)*(a*Cosh[x] + b*Sinh[x])^4) + (3*(b*Cosh[x] + a*Sinh[x]))/(8*(a^2 - b^2)^2*(a*Cosh[x] + b*Sinh[x])^2)

Rule 3076

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[((b*Cos[c + d*x] -
a*Sin[c + d*x])*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1))/(d*(n + 1)*(a^2 + b^2)), x] + Dist[(n + 2)/((n + 1
)*(a^2 + b^2)), Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b
^2, 0] && LtQ[n, -1] && NeQ[n, -2]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a \cosh (x)+b \sinh (x))^5} \, dx &=\frac{b \cosh (x)+a \sinh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 \int \frac{1}{(a \cosh (x)+b \sinh (x))^3} \, dx}{4 \left (a^2-b^2\right )}\\ &=\frac{b \cosh (x)+a \sinh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 (b \cosh (x)+a \sinh (x))}{8 \left (a^2-b^2\right )^2 (a \cosh (x)+b \sinh (x))^2}+\frac{3 \int \frac{1}{a \cosh (x)+b \sinh (x)} \, dx}{8 \left (a^2-b^2\right )^2}\\ &=\frac{b \cosh (x)+a \sinh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 (b \cosh (x)+a \sinh (x))}{8 \left (a^2-b^2\right )^2 (a \cosh (x)+b \sinh (x))^2}+\frac{(3 i) \operatorname{Subst}\left (\int \frac{1}{a^2-b^2-x^2} \, dx,x,-i b \cosh (x)-i a \sinh (x)\right )}{8 \left (a^2-b^2\right )^2}\\ &=\frac{3 \tan ^{-1}\left (\frac{b \cosh (x)+a \sinh (x)}{\sqrt{a^2-b^2}}\right )}{8 \left (a^2-b^2\right )^{5/2}}+\frac{b \cosh (x)+a \sinh (x)}{4 \left (a^2-b^2\right ) (a \cosh (x)+b \sinh (x))^4}+\frac{3 (b \cosh (x)+a \sinh (x))}{8 \left (a^2-b^2\right )^2 (a \cosh (x)+b \sinh (x))^2}\\ \end{align*}

Mathematica [A]  time = 0.984947, size = 147, normalized size = 1.31 $\frac{1}{8} \left (\frac{6 \tan ^{-1}\left (\frac{a \tanh \left (\frac{x}{2}\right )+b}{\sqrt{a-b} \sqrt{a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2}}+\frac{b \left (3 (a \cosh (x)+b \sinh (x))^2+2 (a-b) (a+b)\right )}{a (a-b)^2 (a+b)^2 (a \cosh (x)+b \sinh (x))^3}+\frac{\sinh (x) \left (\frac{3 (a \cosh (x)+b \sinh (x))^2}{(a-b) (a+b)}+2\right )}{a (a \cosh (x)+b \sinh (x))^4}\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a*Cosh[x] + b*Sinh[x])^(-5),x]

[Out]

((6*ArcTan[(b + a*Tanh[x/2])/(Sqrt[a - b]*Sqrt[a + b])])/((a - b)^(5/2)*(a + b)^(5/2)) + (b*(2*(a - b)*(a + b)
+ 3*(a*Cosh[x] + b*Sinh[x])^2))/(a*(a - b)^2*(a + b)^2*(a*Cosh[x] + b*Sinh[x])^3) + (Sinh[x]*(2 + (3*(a*Cosh[
x] + b*Sinh[x])^2)/((a - b)*(a + b))))/(a*(a*Cosh[x] + b*Sinh[x])^4))/8

________________________________________________________________________________________

Maple [B]  time = 0.135, size = 462, normalized size = 4.1 \begin{align*} 2\,{\frac{1}{ \left ( a+2\,\tanh \left ( x/2 \right ) b+a \left ( \tanh \left ( x/2 \right ) \right ) ^{2} \right ) ^{4}} \left ( -1/8\,{\frac{ \left ( 5\,{a}^{4}-16\,{a}^{2}{b}^{2}+8\,{b}^{4} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{7}}{a \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }}-3/8\,{\frac{b \left ({a}^{4}-16\,{a}^{2}{b}^{2}+8\,{b}^{4} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{6}}{ \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ){a}^{2}}}+1/8\,{\frac{ \left ( 3\,{a}^{6}+36\,{a}^{4}{b}^{2}+56\,{a}^{2}{b}^{4}-32\,{b}^{6} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{5}}{ \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ){a}^{3}}}+1/8\,{\frac{b \left ( 15\,{a}^{6}+114\,{a}^{4}{b}^{2}-8\,{a}^{2}{b}^{4}-16\,{b}^{6} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{4}}{{a}^{4} \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }}-1/8\,{\frac{ \left ( 3\,{a}^{6}-84\,{a}^{4}{b}^{2}-56\,{a}^{2}{b}^{4}+32\,{b}^{6} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{3}}{ \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ){a}^{3}}}+1/8\,{\frac{b \left ( 23\,{a}^{4}+64\,{a}^{2}{b}^{2}-24\,{b}^{4} \right ) \left ( \tanh \left ( x/2 \right ) \right ) ^{2}}{ \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ){a}^{2}}}+1/8\,{\frac{ \left ( 5\,{a}^{4}+24\,{a}^{2}{b}^{2}-8\,{b}^{4} \right ) \tanh \left ( x/2 \right ) }{a \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }}+1/8\,{\frac{ \left ( 5\,{a}^{2}-2\,{b}^{2} \right ) b}{{a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4}}} \right ) }+{\frac{3}{4\,{a}^{4}-8\,{a}^{2}{b}^{2}+4\,{b}^{4}}\arctan \left ({\frac{1}{2} \left ( 2\,a\tanh \left ( x/2 \right ) +2\,b \right ){\frac{1}{\sqrt{{a}^{2}-{b}^{2}}}}} \right ){\frac{1}{\sqrt{{a}^{2}-{b}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*cosh(x)+b*sinh(x))^5,x)

[Out]

2*(-1/8*(5*a^4-16*a^2*b^2+8*b^4)/a/(a^4-2*a^2*b^2+b^4)*tanh(1/2*x)^7-3/8*b*(a^4-16*a^2*b^2+8*b^4)/(a^4-2*a^2*b
^2+b^4)/a^2*tanh(1/2*x)^6+1/8/a^3*(3*a^6+36*a^4*b^2+56*a^2*b^4-32*b^6)/(a^4-2*a^2*b^2+b^4)*tanh(1/2*x)^5+1/8/a
^4*b*(15*a^6+114*a^4*b^2-8*a^2*b^4-16*b^6)/(a^4-2*a^2*b^2+b^4)*tanh(1/2*x)^4-1/8/a^3*(3*a^6-84*a^4*b^2-56*a^2*
b^4+32*b^6)/(a^4-2*a^2*b^2+b^4)*tanh(1/2*x)^3+1/8*b*(23*a^4+64*a^2*b^2-24*b^4)/(a^4-2*a^2*b^2+b^4)/a^2*tanh(1/
2*x)^2+1/8*(5*a^4+24*a^2*b^2-8*b^4)/a/(a^4-2*a^2*b^2+b^4)*tanh(1/2*x)+1/8*(5*a^2-2*b^2)*b/(a^4-2*a^2*b^2+b^4))
/(a+2*tanh(1/2*x)*b+a*tanh(1/2*x)^2)^4+3/4/(a^4-2*a^2*b^2+b^4)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tanh(1/2*x)+2*b
)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(x)+b*sinh(x))^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.00787, size = 15709, normalized size = 140.26 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(x)+b*sinh(x))^5,x, algorithm="fricas")

[Out]

[1/8*(6*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^7 + 42*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*
a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)*sinh(x)^6 + 6*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*sinh(x)
^7 + 22*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x)^5 + 2*(11*a^5 + 11*a^4*b - 22*a^3*b^2 - 22
*a^2*b^3 + 11*a*b^4 + 11*b^5 + 63*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^2)*sinh(x)^5
+ 10*(21*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^3 + 11*(a^5 + a^4*b - 2*a^3*b^2 - 2*
a^2*b^3 + a*b^4 + b^5)*cosh(x))*sinh(x)^4 - 22*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x)^3 -
2*(11*a^5 - 11*a^4*b - 22*a^3*b^2 + 22*a^2*b^3 + 11*a*b^4 - 11*b^5 - 105*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b
^3 - 3*a*b^4 - b^5)*cosh(x)^4 - 110*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x)^2)*sinh(x)^3 +
2*(63*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^5 + 110*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^
2*b^3 + a*b^4 + b^5)*cosh(x)^3 - 33*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x))*sinh(x)^2 - 3
*((a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^8 + 8*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x
)*sinh(x)^7 + (a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*sinh(x)^8 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x
)^6 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4 + 7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^6 +
8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^3 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x))*sinh(x
)^5 + 6*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^4 + 2*(35*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^4 + 3*a^
4 - 6*a^2*b^2 + 3*b^4 + 30*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^2)*sinh(x)^4 + a^4 - 4*a^3*b + 6*a^2*b^2 -
4*a*b^3 + b^4 + 8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^5 + 10*(a^4 + 2*a^3*b - 2*a*b^3 - b^4
)*cosh(x)^3 + 3*(a^4 - 2*a^2*b^2 + b^4)*cosh(x))*sinh(x)^3 + 4*(a^4 - 2*a^3*b + 2*a*b^3 - b^4)*cosh(x)^2 + 4*(
7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^6 + 15*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^4 + a^4 -
2*a^3*b + 2*a*b^3 - b^4 + 9*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2)*sinh(x)^2 + 8*((a^4 + 4*a^3*b + 6*a^2*b^2 + 4*
a*b^3 + b^4)*cosh(x)^7 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^5 + 3*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^3 + (
a^4 - 2*a^3*b + 2*a*b^3 - b^4)*cosh(x))*sinh(x))*sqrt(-a^2 + b^2)*log(((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*s
inh(x) + (a + b)*sinh(x)^2 - 2*sqrt(-a^2 + b^2)*(cosh(x) + sinh(x)) - a + b)/((a + b)*cosh(x)^2 + 2*(a + b)*co
sh(x)*sinh(x) + (a + b)*sinh(x)^2 + a - b)) - 6*(a^5 - 3*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 - 3*a*b^4 + b^5)*cosh(x
) + 2*(21*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^6 - 3*a^5 + 9*a^4*b - 6*a^3*b^2 - 6*
a^2*b^3 + 9*a*b^4 - 3*b^5 + 55*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x)^4 - 33*(a^5 - a^4*b
- 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x)^2)*sinh(x))/(a^10 - 4*a^9*b + 3*a^8*b^2 + 8*a^7*b^3 - 14*a^6*b
^4 + 14*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 4*a*b^9 - b^10 + (a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^
4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^8 + 8*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3
- 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)*sinh(x)^7 + (a^10 + 4*a^9*b + 3*a
^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*sinh(x)^8 + 4*(a^10 + 2
*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*
cosh(x)^6 + 4*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2
*b^8 + 2*a*b^9 + b^10 + 7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^
2*b^8 - 4*a*b^9 - b^10)*cosh(x)^2)*sinh(x)^6 + 8*(7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*
a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^3 + 3*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^
6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x))*sinh(x)^5 + 6*(a^10 - 5*a^8*
b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x)^4 + 2*(3*a^10 - 15*a^8*b^2 + 30*a^6*b^4 - 30*a^4*b^6
+ 15*a^2*b^8 - 3*b^10 + 35*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*
a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^4 + 30*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*
a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^2)*sinh(x)^4 + 8*(7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*
a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^5 + 10*(a^10 + 2*a^9*b - 3
*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^3
+ 3*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x))*sinh(x)^3 + 4*(a^10 - 2*a^9*b - 3
*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 12*a^5*b^5 + 2*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 2*a*b^9 + b^10)*cosh(x)^2
+ 4*(a^10 - 2*a^9*b - 3*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 12*a^5*b^5 + 2*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 2*a
*b^9 + b^10 + 7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*
a*b^9 - b^10)*cosh(x)^6 + 15*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*
a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^4 + 9*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 -
b^10)*cosh(x)^2)*sinh(x)^2 + 8*((a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7
- 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^7 + 3*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 +
2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^5 + 3*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6
+ 5*a^2*b^8 - b^10)*cosh(x)^3 + (a^10 - 2*a^9*b - 3*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 12*a^5*b^5 + 2*a^4*b^6
+ 8*a^3*b^7 - 3*a^2*b^8 - 2*a*b^9 + b^10)*cosh(x))*sinh(x)), 1/4*(3*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3
*a*b^4 - b^5)*cosh(x)^7 + 21*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)*sinh(x)^6 + 3*(a^
5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*sinh(x)^7 + 11*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b
^4 + b^5)*cosh(x)^5 + (11*a^5 + 11*a^4*b - 22*a^3*b^2 - 22*a^2*b^3 + 11*a*b^4 + 11*b^5 + 63*(a^5 + 3*a^4*b + 2
*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^2)*sinh(x)^5 + 5*(21*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*
a*b^4 - b^5)*cosh(x)^3 + 11*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x))*sinh(x)^4 - 11*(a^5 -
a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x)^3 - (11*a^5 - 11*a^4*b - 22*a^3*b^2 + 22*a^2*b^3 + 11*a*
b^4 - 11*b^5 - 105*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^4 - 110*(a^5 + a^4*b - 2*a^
3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x)^2)*sinh(x)^3 + (63*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 -
b^5)*cosh(x)^5 + 110*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(x)^3 - 33*(a^5 - a^4*b - 2*a^3*
b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x))*sinh(x)^2 - 3*((a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^8 +
8*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)*sinh(x)^7 + (a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)
*sinh(x)^8 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^6 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4 + 7*(a^4 + 4*a^3*b
+ 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^6 + 8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^
3 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x))*sinh(x)^5 + 6*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^4 + 2*(35*(a^4 +
4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^4 + 3*a^4 - 6*a^2*b^2 + 3*b^4 + 30*(a^4 + 2*a^3*b - 2*a*b^3 - b^4
)*cosh(x)^2)*sinh(x)^4 + a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4 + 8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3
+ b^4)*cosh(x)^5 + 10*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^3 + 3*(a^4 - 2*a^2*b^2 + b^4)*cosh(x))*sinh(x)^
3 + 4*(a^4 - 2*a^3*b + 2*a*b^3 - b^4)*cosh(x)^2 + 4*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^6 +
15*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(x)^4 + a^4 - 2*a^3*b + 2*a*b^3 - b^4 + 9*(a^4 - 2*a^2*b^2 + b^4)*cosh
(x)^2)*sinh(x)^2 + 8*((a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(x)^7 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4
)*cosh(x)^5 + 3*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)^3 + (a^4 - 2*a^3*b + 2*a*b^3 - b^4)*cosh(x))*sinh(x))*sqrt(a^2
- b^2)*arctan(sqrt(a^2 - b^2)/((a + b)*cosh(x) + (a + b)*sinh(x))) - 3*(a^5 - 3*a^4*b + 2*a^3*b^2 + 2*a^2*b^3
- 3*a*b^4 + b^5)*cosh(x) + (21*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*cosh(x)^6 - 3*a^5 + 9*
a^4*b - 6*a^3*b^2 - 6*a^2*b^3 + 9*a*b^4 - 3*b^5 + 55*(a^5 + a^4*b - 2*a^3*b^2 - 2*a^2*b^3 + a*b^4 + b^5)*cosh(
x)^4 - 33*(a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5)*cosh(x)^2)*sinh(x))/(a^10 - 4*a^9*b + 3*a^8*b^2
+ 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 4*a*b^9 - b^10 + (a^10 + 4*a^9*b + 3*a^8*b^2 -
8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^8 + 8*(a^10 + 4*a^9*b +
3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)*sinh(x)^7 +
(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*s
inh(x)^8 + 4*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*
b^8 + 2*a*b^9 + b^10)*cosh(x)^6 + 4*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b
^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10 + 7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*
b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^2)*sinh(x)^6 + 8*(7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*
b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^3 + 3*(a^10 + 2*a^9*b - 3*a^8*
b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x))*sinh(x
)^5 + 6*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x)^4 + 2*(3*a^10 - 15*a^8*b^2 + 3
0*a^6*b^4 - 30*a^4*b^6 + 15*a^2*b^8 - 3*b^10 + 35*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^
4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^4 + 30*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6
*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^2)*sinh(x)^4 + 8*(7*(a^10 + 4*
a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^5 +
10*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*
b^9 + b^10)*cosh(x)^3 + 3*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x))*sinh(x)^3 +
4*(a^10 - 2*a^9*b - 3*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 12*a^5*b^5 + 2*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 2*a*
b^9 + b^10)*cosh(x)^2 + 4*(a^10 - 2*a^9*b - 3*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 12*a^5*b^5 + 2*a^4*b^6 + 8*a^3
*b^7 - 3*a^2*b^8 - 2*a*b^9 + b^10 + 7*(a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 14*a^4*b^6 + 8*a^
3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^6 + 15*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*a^6*b^4 + 12*a^
5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^4 + 9*(a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*
a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x)^2)*sinh(x)^2 + 8*((a^10 + 4*a^9*b + 3*a^8*b^2 - 8*a^7*b^3 - 14*a^6*b^4 + 1
4*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 4*a*b^9 - b^10)*cosh(x)^7 + 3*(a^10 + 2*a^9*b - 3*a^8*b^2 - 8*a^7*b^3 + 2*
a^6*b^4 + 12*a^5*b^5 + 2*a^4*b^6 - 8*a^3*b^7 - 3*a^2*b^8 + 2*a*b^9 + b^10)*cosh(x)^5 + 3*(a^10 - 5*a^8*b^2 + 1
0*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*cosh(x)^3 + (a^10 - 2*a^9*b - 3*a^8*b^2 + 8*a^7*b^3 + 2*a^6*b^4 - 1
2*a^5*b^5 + 2*a^4*b^6 + 8*a^3*b^7 - 3*a^2*b^8 - 2*a*b^9 + b^10)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(x)+b*sinh(x))**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.16447, size = 319, normalized size = 2.85 \begin{align*} \frac{3 \, \arctan \left (\frac{a e^{x} + b e^{x}}{\sqrt{a^{2} - b^{2}}}\right )}{4 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} - b^{2}}} + \frac{3 \, a^{3} e^{\left (7 \, x\right )} + 9 \, a^{2} b e^{\left (7 \, x\right )} + 9 \, a b^{2} e^{\left (7 \, x\right )} + 3 \, b^{3} e^{\left (7 \, x\right )} + 11 \, a^{3} e^{\left (5 \, x\right )} + 11 \, a^{2} b e^{\left (5 \, x\right )} - 11 \, a b^{2} e^{\left (5 \, x\right )} - 11 \, b^{3} e^{\left (5 \, x\right )} - 11 \, a^{3} e^{\left (3 \, x\right )} + 11 \, a^{2} b e^{\left (3 \, x\right )} + 11 \, a b^{2} e^{\left (3 \, x\right )} - 11 \, b^{3} e^{\left (3 \, x\right )} - 3 \, a^{3} e^{x} + 9 \, a^{2} b e^{x} - 9 \, a b^{2} e^{x} + 3 \, b^{3} e^{x}}{4 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (a e^{\left (2 \, x\right )} + b e^{\left (2 \, x\right )} + a - b\right )}^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(x)+b*sinh(x))^5,x, algorithm="giac")

[Out]

3/4*arctan((a*e^x + b*e^x)/sqrt(a^2 - b^2))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + 1/4*(3*a^3*e^(7*x) + 9
*a^2*b*e^(7*x) + 9*a*b^2*e^(7*x) + 3*b^3*e^(7*x) + 11*a^3*e^(5*x) + 11*a^2*b*e^(5*x) - 11*a*b^2*e^(5*x) - 11*b
^3*e^(5*x) - 11*a^3*e^(3*x) + 11*a^2*b*e^(3*x) + 11*a*b^2*e^(3*x) - 11*b^3*e^(3*x) - 3*a^3*e^x + 9*a^2*b*e^x -
9*a*b^2*e^x + 3*b^3*e^x)/((a^4 - 2*a^2*b^2 + b^4)*(a*e^(2*x) + b*e^(2*x) + a - b)^4)