### 3.550 $$\int \frac{x \cosh (a+b x)}{\sinh ^{\frac{7}{2}}(a+b x)} \, dx$$

Optimal. Leaf size=98 $\frac{4 i \sqrt{i \sinh (a+b x)} \text{EllipticF}\left (\frac{1}{2} \left (i a+i b x-\frac{\pi }{2}\right ),2\right )}{15 b^2 \sqrt{\sinh (a+b x)}}-\frac{4 \cosh (a+b x)}{15 b^2 \sinh ^{\frac{3}{2}}(a+b x)}-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}$

[Out]

(-2*x)/(5*b*Sinh[a + b*x]^(5/2)) - (4*Cosh[a + b*x])/(15*b^2*Sinh[a + b*x]^(3/2)) + (((4*I)/15)*EllipticF[(I*a
- Pi/2 + I*b*x)/2, 2]*Sqrt[I*Sinh[a + b*x]])/(b^2*Sqrt[Sinh[a + b*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0530723, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.222, Rules used = {5372, 2636, 2642, 2641} $-\frac{4 \cosh (a+b x)}{15 b^2 \sinh ^{\frac{3}{2}}(a+b x)}+\frac{4 i \sqrt{i \sinh (a+b x)} F\left (\left .\frac{1}{2} \left (i a+i b x-\frac{\pi }{2}\right )\right |2\right )}{15 b^2 \sqrt{\sinh (a+b x)}}-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x*Cosh[a + b*x])/Sinh[a + b*x]^(7/2),x]

[Out]

(-2*x)/(5*b*Sinh[a + b*x]^(5/2)) - (4*Cosh[a + b*x])/(15*b^2*Sinh[a + b*x]^(3/2)) + (((4*I)/15)*EllipticF[(I*a
- Pi/2 + I*b*x)/2, 2]*Sqrt[I*Sinh[a + b*x]])/(b^2*Sqrt[Sinh[a + b*x]])

Rule 5372

Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.), x_Symbol] :> Simp[(x^(m -
n + 1)*Sinh[a + b*x^n]^(p + 1))/(b*n*(p + 1)), x] - Dist[(m - n + 1)/(b*n*(p + 1)), Int[x^(m - n)*Sinh[a + b*x
^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{x \cosh (a+b x)}{\sinh ^{\frac{7}{2}}(a+b x)} \, dx &=-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}+\frac{2 \int \frac{1}{\sinh ^{\frac{5}{2}}(a+b x)} \, dx}{5 b}\\ &=-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}-\frac{4 \cosh (a+b x)}{15 b^2 \sinh ^{\frac{3}{2}}(a+b x)}-\frac{2 \int \frac{1}{\sqrt{\sinh (a+b x)}} \, dx}{15 b}\\ &=-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}-\frac{4 \cosh (a+b x)}{15 b^2 \sinh ^{\frac{3}{2}}(a+b x)}-\frac{\left (2 \sqrt{i \sinh (a+b x)}\right ) \int \frac{1}{\sqrt{i \sinh (a+b x)}} \, dx}{15 b \sqrt{\sinh (a+b x)}}\\ &=-\frac{2 x}{5 b \sinh ^{\frac{5}{2}}(a+b x)}-\frac{4 \cosh (a+b x)}{15 b^2 \sinh ^{\frac{3}{2}}(a+b x)}+\frac{4 i F\left (\left .\frac{1}{2} \left (i a-\frac{\pi }{2}+i b x\right )\right |2\right ) \sqrt{i \sinh (a+b x)}}{15 b^2 \sqrt{\sinh (a+b x)}}\\ \end{align*}

Mathematica [A]  time = 0.270612, size = 67, normalized size = 0.68 $-\frac{2 \left (-2 i (i \sinh (a+b x))^{5/2} \text{EllipticF}\left (\frac{1}{4} (-2 i a-2 i b x+\pi ),2\right )+\sinh (2 (a+b x))+3 b x\right )}{15 b^2 \sinh ^{\frac{5}{2}}(a+b x)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x*Cosh[a + b*x])/Sinh[a + b*x]^(7/2),x]

[Out]

(-2*(3*b*x - (2*I)*EllipticF[((-2*I)*a + Pi - (2*I)*b*x)/4, 2]*(I*Sinh[a + b*x])^(5/2) + Sinh[2*(a + b*x)]))/(
15*b^2*Sinh[a + b*x]^(5/2))

________________________________________________________________________________________

Maple [F]  time = 0.026, size = 0, normalized size = 0. \begin{align*} \int{x\cosh \left ( bx+a \right ) \left ( \sinh \left ( bx+a \right ) \right ) ^{-{\frac{7}{2}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x*cosh(b*x+a)/sinh(b*x+a)^(7/2),x)

[Out]

int(x*cosh(b*x+a)/sinh(b*x+a)^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \cosh \left (b x + a\right )}{\sinh \left (b x + a\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)/sinh(b*x+a)^(7/2),x, algorithm="maxima")

[Out]

integrate(x*cosh(b*x + a)/sinh(b*x + a)^(7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)/sinh(b*x+a)^(7/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)/sinh(b*x+a)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \cosh \left (b x + a\right )}{\sinh \left (b x + a\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)/sinh(b*x+a)^(7/2),x, algorithm="giac")

[Out]

integrate(x*cosh(b*x + a)/sinh(b*x + a)^(7/2), x)