### 3.403 $$\int \frac{\coth (a+b x)}{x^2} \, dx$$

Optimal. Leaf size=12 $\text{Unintegrable}\left (\frac{\coth (a+b x)}{x^2},x\right )$

[Out]

Unintegrable[Coth[a + b*x]/x^2, x]

________________________________________________________________________________________

Rubi [A]  time = 0.0170219, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{\coth (a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[Coth[a + b*x]/x^2,x]

[Out]

Defer[Int][Coth[a + b*x]/x^2, x]

Rubi steps

\begin{align*} \int \frac{\coth (a+b x)}{x^2} \, dx &=\int \frac{\coth (a+b x)}{x^2} \, dx\\ \end{align*}

Mathematica [A]  time = 0.832757, size = 0, normalized size = 0. $\int \frac{\coth (a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[Coth[a + b*x]/x^2,x]

[Out]

Integrate[Coth[a + b*x]/x^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 0, normalized size = 0. \begin{align*} \int{\frac{\cosh \left ( bx+a \right ){\rm csch} \left (bx+a\right )}{{x}^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(b*x+a)*csch(b*x+a)/x^2,x)

[Out]

int(cosh(b*x+a)*csch(b*x+a)/x^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{x} - \int \frac{1}{x^{2} e^{\left (b x + a\right )} + x^{2}}\,{d x} + \int \frac{1}{x^{2} e^{\left (b x + a\right )} - x^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*csch(b*x+a)/x^2,x, algorithm="maxima")

[Out]

-1/x - integrate(1/(x^2*e^(b*x + a) + x^2), x) + integrate(1/(x^2*e^(b*x + a) - x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cosh \left (b x + a\right ) \operatorname{csch}\left (b x + a\right )}{x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*csch(b*x+a)/x^2,x, algorithm="fricas")

[Out]

integral(cosh(b*x + a)*csch(b*x + a)/x^2, x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh{\left (a + b x \right )} \operatorname{csch}{\left (a + b x \right )}}{x^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*csch(b*x+a)/x**2,x)

[Out]

Integral(cosh(a + b*x)*csch(a + b*x)/x**2, x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (b x + a\right ) \operatorname{csch}\left (b x + a\right )}{x^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)*csch(b*x+a)/x^2,x, algorithm="giac")

[Out]

integrate(cosh(b*x + a)*csch(b*x + a)/x^2, x)