### 3.389 $$\int \frac{\sinh (a+b x) \tanh ^2(a+b x)}{x^2} \, dx$$

Optimal. Leaf size=48 $-\text{CannotIntegrate}\left (\frac{\tanh (a+b x) \text{sech}(a+b x)}{x^2},x\right )+b \cosh (a) \text{Chi}(b x)+b \sinh (a) \text{Shi}(b x)-\frac{\sinh (a+b x)}{x}$

[Out]

-CannotIntegrate[(Sech[a + b*x]*Tanh[a + b*x])/x^2, x] + b*Cosh[a]*CoshIntegral[b*x] - Sinh[a + b*x]/x + b*Sin
h[a]*SinhIntegral[b*x]

________________________________________________________________________________________

Rubi [A]  time = 0.125964, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{\sinh (a+b x) \tanh ^2(a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[(Sinh[a + b*x]*Tanh[a + b*x]^2)/x^2,x]

[Out]

b*Cosh[a]*CoshIntegral[b*x] - Sinh[a + b*x]/x + b*Sinh[a]*SinhIntegral[b*x] - Defer[Int][(Sech[a + b*x]*Tanh[a
+ b*x])/x^2, x]

Rubi steps

\begin{align*} \int \frac{\sinh (a+b x) \tanh ^2(a+b x)}{x^2} \, dx &=\int \frac{\sinh (a+b x)}{x^2} \, dx-\int \frac{\text{sech}(a+b x) \tanh (a+b x)}{x^2} \, dx\\ &=-\frac{\sinh (a+b x)}{x}+b \int \frac{\cosh (a+b x)}{x} \, dx-\int \frac{\text{sech}(a+b x) \tanh (a+b x)}{x^2} \, dx\\ &=-\frac{\sinh (a+b x)}{x}+(b \cosh (a)) \int \frac{\cosh (b x)}{x} \, dx+(b \sinh (a)) \int \frac{\sinh (b x)}{x} \, dx-\int \frac{\text{sech}(a+b x) \tanh (a+b x)}{x^2} \, dx\\ &=b \cosh (a) \text{Chi}(b x)-\frac{\sinh (a+b x)}{x}+b \sinh (a) \text{Shi}(b x)-\int \frac{\text{sech}(a+b x) \tanh (a+b x)}{x^2} \, dx\\ \end{align*}

Mathematica [A]  time = 9.81036, size = 0, normalized size = 0. $\int \frac{\sinh (a+b x) \tanh ^2(a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[(Sinh[a + b*x]*Tanh[a + b*x]^2)/x^2,x]

[Out]

Integrate[(Sinh[a + b*x]*Tanh[a + b*x]^2)/x^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ({\rm sech} \left (bx+a\right ) \right ) ^{2} \left ( \sinh \left ( bx+a \right ) \right ) ^{3}}{{x}^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sech(b*x+a)^2*sinh(b*x+a)^3/x^2,x)

[Out]

int(sech(b*x+a)^2*sinh(b*x+a)^3/x^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{1}{2} \, b e^{\left (-a\right )} \Gamma \left (-1, b x\right ) + \frac{1}{2} \, b e^{a} \Gamma \left (-1, -b x\right ) + \frac{2 \, e^{\left (b x + a\right )}}{b x^{2} e^{\left (2 \, b x + 2 \, a\right )} + b x^{2}} + 4 \, \int \frac{e^{\left (b x + a\right )}}{b x^{3} e^{\left (2 \, b x + 2 \, a\right )} + b x^{3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^2*sinh(b*x+a)^3/x^2,x, algorithm="maxima")

[Out]

1/2*b*e^(-a)*gamma(-1, b*x) + 1/2*b*e^a*gamma(-1, -b*x) + 2*e^(b*x + a)/(b*x^2*e^(2*b*x + 2*a) + b*x^2) + 4*in
tegrate(e^(b*x + a)/(b*x^3*e^(2*b*x + 2*a) + b*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{sech}\left (b x + a\right )^{2} \sinh \left (b x + a\right )^{3}}{x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^2*sinh(b*x+a)^3/x^2,x, algorithm="fricas")

[Out]

integral(sech(b*x + a)^2*sinh(b*x + a)^3/x^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)**2*sinh(b*x+a)**3/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}\left (b x + a\right )^{2} \sinh \left (b x + a\right )^{3}}{x^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^2*sinh(b*x+a)^3/x^2,x, algorithm="giac")

[Out]

integrate(sech(b*x + a)^2*sinh(b*x + a)^3/x^2, x)