### 3.263 $$\int \cosh ^2(a+b x) \sinh (a+b x) \, dx$$

Optimal. Leaf size=15 $\frac{\cosh ^3(a+b x)}{3 b}$

[Out]

Cosh[a + b*x]^3/(3*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0205782, antiderivative size = 15, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.133, Rules used = {2565, 30} $\frac{\cosh ^3(a+b x)}{3 b}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[a + b*x]^2*Sinh[a + b*x],x]

[Out]

Cosh[a + b*x]^3/(3*b)

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
&&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \cosh ^2(a+b x) \sinh (a+b x) \, dx &=\frac{\operatorname{Subst}\left (\int x^2 \, dx,x,\cosh (a+b x)\right )}{b}\\ &=\frac{\cosh ^3(a+b x)}{3 b}\\ \end{align*}

Mathematica [A]  time = 0.0033687, size = 15, normalized size = 1. $\frac{\cosh ^3(a+b x)}{3 b}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[a + b*x]^2*Sinh[a + b*x],x]

[Out]

Cosh[a + b*x]^3/(3*b)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 14, normalized size = 0.9 \begin{align*}{\frac{ \left ( \cosh \left ( bx+a \right ) \right ) ^{3}}{3\,b}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(b*x+a)*cosh(b*x+a)^2,x)

[Out]

1/3*cosh(b*x+a)^3/b

________________________________________________________________________________________

Maxima [A]  time = 1.17164, size = 18, normalized size = 1.2 \begin{align*} \frac{\cosh \left (b x + a\right )^{3}}{3 \, b} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^2*sinh(b*x+a),x, algorithm="maxima")

[Out]

1/3*cosh(b*x + a)^3/b

________________________________________________________________________________________

Fricas [B]  time = 2.2081, size = 105, normalized size = 7. \begin{align*} \frac{\cosh \left (b x + a\right )^{3} + 3 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right )^{2} + 3 \, \cosh \left (b x + a\right )}{12 \, b} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^2*sinh(b*x+a),x, algorithm="fricas")

[Out]

1/12*(cosh(b*x + a)^3 + 3*cosh(b*x + a)*sinh(b*x + a)^2 + 3*cosh(b*x + a))/b

________________________________________________________________________________________

Sympy [A]  time = 0.516506, size = 20, normalized size = 1.33 \begin{align*} \begin{cases} \frac{\cosh ^{3}{\left (a + b x \right )}}{3 b} & \text{for}\: b \neq 0 \\x \sinh{\left (a \right )} \cosh ^{2}{\left (a \right )} & \text{otherwise} \end{cases} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)**2*sinh(b*x+a),x)

[Out]

Piecewise((cosh(a + b*x)**3/(3*b), Ne(b, 0)), (x*sinh(a)*cosh(a)**2, True))

________________________________________________________________________________________

Giac [B]  time = 1.13505, size = 62, normalized size = 4.13 \begin{align*} \frac{{\left (3 \, e^{\left (2 \, b x + 2 \, a\right )} + 1\right )} e^{\left (-3 \, b x - 3 \, a\right )} + e^{\left (3 \, b x + 3 \, a\right )} + 3 \, e^{\left (b x + a\right )}}{24 \, b} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^2*sinh(b*x+a),x, algorithm="giac")

[Out]

1/24*((3*e^(2*b*x + 2*a) + 1)*e^(-3*b*x - 3*a) + e^(3*b*x + 3*a) + 3*e^(b*x + a))/b