3.82 \(\int \frac{\text{csch}^3(x)}{a+b \text{csch}(x)} \, dx\)

Optimal. Leaf size=59 \[ -\frac{2 a^2 \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{b^2 \sqrt{a^2+b^2}}+\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{\coth (x)}{b} \]

[Out]

(a*ArcTanh[Cosh[x]])/b^2 - (2*a^2*ArcTanh[(a - b*Tanh[x/2])/Sqrt[a^2 + b^2]])/(b^2*Sqrt[a^2 + b^2]) - Coth[x]/
b

________________________________________________________________________________________

Rubi [A]  time = 0.159803, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {3790, 3789, 3770, 3831, 2660, 618, 206} \[ -\frac{2 a^2 \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{b^2 \sqrt{a^2+b^2}}+\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{\coth (x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[Csch[x]^3/(a + b*Csch[x]),x]

[Out]

(a*ArcTanh[Cosh[x]])/b^2 - (2*a^2*ArcTanh[(a - b*Tanh[x/2])/Sqrt[a^2 + b^2]])/(b^2*Sqrt[a^2 + b^2]) - Coth[x]/
b

Rule 3790

Int[csc[(e_.) + (f_.)*(x_)]^3/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(b*f), x
] - Dist[a/b, Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3789

Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[Csc[e + f*x],
 x], x] - Dist[a/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}^3(x)}{a+b \text{csch}(x)} \, dx &=-\frac{\coth (x)}{b}-\frac{a \int \frac{\text{csch}^2(x)}{a+b \text{csch}(x)} \, dx}{b}\\ &=-\frac{\coth (x)}{b}-\frac{a \int \text{csch}(x) \, dx}{b^2}+\frac{a^2 \int \frac{\text{csch}(x)}{a+b \text{csch}(x)} \, dx}{b^2}\\ &=\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{\coth (x)}{b}+\frac{a^2 \int \frac{1}{1+\frac{a \sinh (x)}{b}} \, dx}{b^3}\\ &=\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{\coth (x)}{b}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{2 a x}{b}-x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{b^3}\\ &=\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{\coth (x)}{b}-\frac{\left (4 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 \left (1+\frac{a^2}{b^2}\right )-x^2} \, dx,x,\frac{2 a}{b}-2 \tanh \left (\frac{x}{2}\right )\right )}{b^3}\\ &=\frac{a \tanh ^{-1}(\cosh (x))}{b^2}-\frac{2 a^2 \tanh ^{-1}\left (\frac{b \left (\frac{a}{b}-\tanh \left (\frac{x}{2}\right )\right )}{\sqrt{a^2+b^2}}\right )}{b^2 \sqrt{a^2+b^2}}-\frac{\coth (x)}{b}\\ \end{align*}

Mathematica [A]  time = 0.278098, size = 71, normalized size = 1.2 \[ \frac{\frac{4 a^2 \tan ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{-a^2-b^2}}\right )}{\sqrt{-a^2-b^2}}-2 a \log \left (\tanh \left (\frac{x}{2}\right )\right )-2 b \coth (x)}{2 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[x]^3/(a + b*Csch[x]),x]

[Out]

((4*a^2*ArcTan[(a - b*Tanh[x/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] - 2*b*Coth[x] - 2*a*Log[Tanh[x/2]])/(2*b^
2)

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 73, normalized size = 1.2 \begin{align*} -{\frac{1}{2\,b}\tanh \left ({\frac{x}{2}} \right ) }+2\,{\frac{{a}^{2}}{{b}^{2}\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,\tanh \left ( x/2 \right ) b-2\,a}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }-{\frac{1}{2\,b} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{-1}}-{\frac{a}{{b}^{2}}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(x)^3/(a+b*csch(x)),x)

[Out]

-1/2/b*tanh(1/2*x)+2*a^2/b^2/(a^2+b^2)^(1/2)*arctanh(1/2*(2*tanh(1/2*x)*b-2*a)/(a^2+b^2)^(1/2))-1/2/b/tanh(1/2
*x)-a/b^2*ln(tanh(1/2*x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(a+b*csch(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.19974, size = 926, normalized size = 15.69 \begin{align*} \frac{2 \, a^{2} b + 2 \, b^{3} -{\left (a^{2} \cosh \left (x\right )^{2} + 2 \, a^{2} \cosh \left (x\right ) \sinh \left (x\right ) + a^{2} \sinh \left (x\right )^{2} - a^{2}\right )} \sqrt{a^{2} + b^{2}} \log \left (\frac{a^{2} \cosh \left (x\right )^{2} + a^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) + a^{2} + 2 \, b^{2} + 2 \,{\left (a^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) - 2 \, \sqrt{a^{2} + b^{2}}{\left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + b\right )}}{a \cosh \left (x\right )^{2} + a \sinh \left (x\right )^{2} + 2 \, b \cosh \left (x\right ) + 2 \,{\left (a \cosh \left (x\right ) + b\right )} \sinh \left (x\right ) - a}\right ) +{\left (a^{3} + a b^{2} -{\left (a^{3} + a b^{2}\right )} \cosh \left (x\right )^{2} - 2 \,{\left (a^{3} + a b^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) -{\left (a^{3} + a b^{2}\right )} \sinh \left (x\right )^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) -{\left (a^{3} + a b^{2} -{\left (a^{3} + a b^{2}\right )} \cosh \left (x\right )^{2} - 2 \,{\left (a^{3} + a b^{2}\right )} \cosh \left (x\right ) \sinh \left (x\right ) -{\left (a^{3} + a b^{2}\right )} \sinh \left (x\right )^{2}\right )} \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) - 1\right )}{a^{2} b^{2} + b^{4} -{\left (a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right )^{2} - 2 \,{\left (a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right ) \sinh \left (x\right ) -{\left (a^{2} b^{2} + b^{4}\right )} \sinh \left (x\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(a+b*csch(x)),x, algorithm="fricas")

[Out]

(2*a^2*b + 2*b^3 - (a^2*cosh(x)^2 + 2*a^2*cosh(x)*sinh(x) + a^2*sinh(x)^2 - a^2)*sqrt(a^2 + b^2)*log((a^2*cosh
(x)^2 + a^2*sinh(x)^2 + 2*a*b*cosh(x) + a^2 + 2*b^2 + 2*(a^2*cosh(x) + a*b)*sinh(x) - 2*sqrt(a^2 + b^2)*(a*cos
h(x) + a*sinh(x) + b))/(a*cosh(x)^2 + a*sinh(x)^2 + 2*b*cosh(x) + 2*(a*cosh(x) + b)*sinh(x) - a)) + (a^3 + a*b
^2 - (a^3 + a*b^2)*cosh(x)^2 - 2*(a^3 + a*b^2)*cosh(x)*sinh(x) - (a^3 + a*b^2)*sinh(x)^2)*log(cosh(x) + sinh(x
) + 1) - (a^3 + a*b^2 - (a^3 + a*b^2)*cosh(x)^2 - 2*(a^3 + a*b^2)*cosh(x)*sinh(x) - (a^3 + a*b^2)*sinh(x)^2)*l
og(cosh(x) + sinh(x) - 1))/(a^2*b^2 + b^4 - (a^2*b^2 + b^4)*cosh(x)^2 - 2*(a^2*b^2 + b^4)*cosh(x)*sinh(x) - (a
^2*b^2 + b^4)*sinh(x)^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}^{3}{\left (x \right )}}{a + b \operatorname{csch}{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)**3/(a+b*csch(x)),x)

[Out]

Integral(csch(x)**3/(a + b*csch(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.20938, size = 132, normalized size = 2.24 \begin{align*} \frac{a^{2} \log \left (\frac{{\left | 2 \, a e^{x} + 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a e^{x} + 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} b^{2}} + \frac{a \log \left (e^{x} + 1\right )}{b^{2}} - \frac{a \log \left ({\left | e^{x} - 1 \right |}\right )}{b^{2}} - \frac{2}{b{\left (e^{\left (2 \, x\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^3/(a+b*csch(x)),x, algorithm="giac")

[Out]

a^2*log(abs(2*a*e^x + 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*e^x + 2*b + 2*sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*b^2) +
 a*log(e^x + 1)/b^2 - a*log(abs(e^x - 1))/b^2 - 2/(b*(e^(2*x) - 1))