3.80 \(\int \frac{\text{csch}(x)}{a+b \text{csch}(x)} \, dx\)

Optimal. Leaf size=37 \[ -\frac{2 \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}} \]

[Out]

(-2*ArcTanh[(a - b*Tanh[x/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2 + b^2]

________________________________________________________________________________________

Rubi [A]  time = 0.0663334, antiderivative size = 37, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {3831, 2660, 618, 206} \[ -\frac{2 \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}} \]

Antiderivative was successfully verified.

[In]

Int[Csch[x]/(a + b*Csch[x]),x]

[Out]

(-2*ArcTanh[(a - b*Tanh[x/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2 + b^2]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}(x)}{a+b \text{csch}(x)} \, dx &=\frac{\int \frac{1}{1+\frac{a \sinh (x)}{b}} \, dx}{b}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+\frac{2 a x}{b}-x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{b}\\ &=-\frac{4 \operatorname{Subst}\left (\int \frac{1}{4 \left (1+\frac{a^2}{b^2}\right )-x^2} \, dx,x,\frac{2 a}{b}-2 \tanh \left (\frac{x}{2}\right )\right )}{b}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{b \left (\frac{a}{b}-\tanh \left (\frac{x}{2}\right )\right )}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}}\\ \end{align*}

Mathematica [A]  time = 0.024058, size = 45, normalized size = 1.22 \[ \frac{2 \tan ^{-1}\left (\frac{a-b \tanh \left (\frac{x}{2}\right )}{\sqrt{-a^2-b^2}}\right )}{\sqrt{-a^2-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[x]/(a + b*Csch[x]),x]

[Out]

(2*ArcTan[(a - b*Tanh[x/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2]

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 35, normalized size = 1. \begin{align*} 2\,{\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,\tanh \left ( x/2 \right ) b-2\,a}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(x)/(a+b*csch(x)),x)

[Out]

2/(a^2+b^2)^(1/2)*arctanh(1/2*(2*tanh(1/2*x)*b-2*a)/(a^2+b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*csch(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.79808, size = 321, normalized size = 8.68 \begin{align*} \frac{\log \left (\frac{a^{2} \cosh \left (x\right )^{2} + a^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) + a^{2} + 2 \, b^{2} + 2 \,{\left (a^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) - 2 \, \sqrt{a^{2} + b^{2}}{\left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + b\right )}}{a \cosh \left (x\right )^{2} + a \sinh \left (x\right )^{2} + 2 \, b \cosh \left (x\right ) + 2 \,{\left (a \cosh \left (x\right ) + b\right )} \sinh \left (x\right ) - a}\right )}{\sqrt{a^{2} + b^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*csch(x)),x, algorithm="fricas")

[Out]

log((a^2*cosh(x)^2 + a^2*sinh(x)^2 + 2*a*b*cosh(x) + a^2 + 2*b^2 + 2*(a^2*cosh(x) + a*b)*sinh(x) - 2*sqrt(a^2
+ b^2)*(a*cosh(x) + a*sinh(x) + b))/(a*cosh(x)^2 + a*sinh(x)^2 + 2*b*cosh(x) + 2*(a*cosh(x) + b)*sinh(x) - a))
/sqrt(a^2 + b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}{\left (x \right )}}{a + b \operatorname{csch}{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*csch(x)),x)

[Out]

Integral(csch(x)/(a + b*csch(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.16349, size = 76, normalized size = 2.05 \begin{align*} \frac{\log \left (\frac{{\left | 2 \, a e^{x} + 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a e^{x} + 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)/(a+b*csch(x)),x, algorithm="giac")

[Out]

log(abs(2*a*e^x + 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*e^x + 2*b + 2*sqrt(a^2 + b^2)))/sqrt(a^2 + b^2)