3.174 \(\int \frac{1}{x \text{csch}^{\frac{3}{2}}(a+b \log (c x^n))} \, dx\)

Optimal. Leaf size=111 \[ \frac{2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )}}+\frac{2 i \sqrt{i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )} \text{EllipticF}\left (\frac{1}{2} \left (i a+i b \log \left (c x^n\right )-\frac{\pi }{2}\right ),2\right )}{3 b n} \]

[Out]

(2*Cosh[a + b*Log[c*x^n]])/(3*b*n*Sqrt[Csch[a + b*Log[c*x^n]]]) + (((2*I)/3)*Sqrt[Csch[a + b*Log[c*x^n]]]*Elli
pticF[(I*a - Pi/2 + I*b*Log[c*x^n])/2, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]])/(b*n)

________________________________________________________________________________________

Rubi [A]  time = 0.0601368, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {3769, 3771, 2641} \[ \frac{2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )}}+\frac{2 i \sqrt{i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac{1}{2} \left (i a+i b \log \left (c x^n\right )-\frac{\pi }{2}\right )\right |2\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Csch[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(2*Cosh[a + b*Log[c*x^n]])/(3*b*n*Sqrt[Csch[a + b*Log[c*x^n]]]) + (((2*I)/3)*Sqrt[Csch[a + b*Log[c*x^n]]]*Elli
pticF[(I*a - Pi/2 + I*b*Log[c*x^n])/2, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]])/(b*n)

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \text{csch}^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\text{csch}^{\frac{3}{2}}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac{2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac{\operatorname{Subst}\left (\int \sqrt{\text{csch}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=\frac{2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )}}-\frac{\left (\sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )} \sqrt{i \sinh \left (a+b \log \left (c x^n\right )\right )}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{i \sinh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=\frac{2 \cosh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )}}+\frac{2 i \sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac{1}{2} \left (i a-\frac{\pi }{2}+i b \log \left (c x^n\right )\right )\right |2\right ) \sqrt{i \sinh \left (a+b \log \left (c x^n\right )\right )}}{3 b n}\\ \end{align*}

Mathematica [A]  time = 0.128335, size = 86, normalized size = 0.77 \[ \frac{\sqrt{\text{csch}\left (a+b \log \left (c x^n\right )\right )} \left (\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-2 i \sqrt{i \sinh \left (a+b \log \left (c x^n\right )\right )} \text{EllipticF}\left (\frac{1}{4} \left (-2 i a-2 i b \log \left (c x^n\right )+\pi \right ),2\right )\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Csch[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(Sqrt[Csch[a + b*Log[c*x^n]]]*((-2*I)*EllipticF[((-2*I)*a + Pi - (2*I)*b*Log[c*x^n])/4, 2]*Sqrt[I*Sinh[a + b*L
og[c*x^n]]] + Sinh[2*(a + b*Log[c*x^n])]))/(3*b*n)

________________________________________________________________________________________

Maple [A]  time = 0.027, size = 143, normalized size = 1.3 \begin{align*}{\frac{1}{n\cosh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) b} \left ( -{\frac{i}{3}}\sqrt{1-i\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) }\sqrt{2}\sqrt{1+i\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) }\sqrt{i\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) }{\it EllipticF} \left ( \sqrt{1-i\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) },{\frac{\sqrt{2}}{2}} \right ) +{\frac{2\, \left ( \cosh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) }{3}} \right ){\frac{1}{\sqrt{\sinh \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/csch(a+b*ln(c*x^n))^(3/2),x)

[Out]

1/n*(-1/3*I*(1-I*sinh(a+b*ln(c*x^n)))^(1/2)*2^(1/2)*(1+I*sinh(a+b*ln(c*x^n)))^(1/2)*(I*sinh(a+b*ln(c*x^n)))^(1
/2)*EllipticF((1-I*sinh(a+b*ln(c*x^n)))^(1/2),1/2*2^(1/2))+2/3*cosh(a+b*ln(c*x^n))^2*sinh(a+b*ln(c*x^n)))/cosh
(a+b*ln(c*x^n))/sinh(a+b*ln(c*x^n))^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \operatorname{csch}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x*csch(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{x \operatorname{csch}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")

[Out]

integral(1/(x*csch(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \operatorname{csch}^{\frac{3}{2}}{\left (a + b \log{\left (c x^{n} \right )} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/csch(a+b*ln(c*x**n))**(3/2),x)

[Out]

Integral(1/(x*csch(a + b*log(c*x**n))**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \operatorname{csch}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/csch(a+b*log(c*x^n))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(x*csch(b*log(c*x^n) + a)^(3/2)), x)