3.13 \(\int (b \text{csch}(c+d x))^{7/2} \, dx\)

Optimal. Leaf size=116 \[ \frac{6 b^3 \cosh (c+d x) \sqrt{b \text{csch}(c+d x)}}{5 d}+\frac{6 i b^4 E\left (\left .\frac{1}{2} \left (i c+i d x-\frac{\pi }{2}\right )\right |2\right )}{5 d \sqrt{i \sinh (c+d x)} \sqrt{b \text{csch}(c+d x)}}-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d} \]

[Out]

(6*b^3*Cosh[c + d*x]*Sqrt[b*Csch[c + d*x]])/(5*d) - (2*b*Cosh[c + d*x]*(b*Csch[c + d*x])^(5/2))/(5*d) + (((6*I
)/5)*b^4*EllipticE[(I*c - Pi/2 + I*d*x)/2, 2])/(d*Sqrt[b*Csch[c + d*x]]*Sqrt[I*Sinh[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0611193, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3768, 3771, 2639} \[ \frac{6 b^3 \cosh (c+d x) \sqrt{b \text{csch}(c+d x)}}{5 d}+\frac{6 i b^4 E\left (\left .\frac{1}{2} \left (i c+i d x-\frac{\pi }{2}\right )\right |2\right )}{5 d \sqrt{i \sinh (c+d x)} \sqrt{b \text{csch}(c+d x)}}-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(b*Csch[c + d*x])^(7/2),x]

[Out]

(6*b^3*Cosh[c + d*x]*Sqrt[b*Csch[c + d*x]])/(5*d) - (2*b*Cosh[c + d*x]*(b*Csch[c + d*x])^(5/2))/(5*d) + (((6*I
)/5)*b^4*EllipticE[(I*c - Pi/2 + I*d*x)/2, 2])/(d*Sqrt[b*Csch[c + d*x]]*Sqrt[I*Sinh[c + d*x]])

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int (b \text{csch}(c+d x))^{7/2} \, dx &=-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d}-\frac{1}{5} \left (3 b^2\right ) \int (b \text{csch}(c+d x))^{3/2} \, dx\\ &=\frac{6 b^3 \cosh (c+d x) \sqrt{b \text{csch}(c+d x)}}{5 d}-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d}-\frac{1}{5} \left (3 b^4\right ) \int \frac{1}{\sqrt{b \text{csch}(c+d x)}} \, dx\\ &=\frac{6 b^3 \cosh (c+d x) \sqrt{b \text{csch}(c+d x)}}{5 d}-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d}-\frac{\left (3 b^4\right ) \int \sqrt{i \sinh (c+d x)} \, dx}{5 \sqrt{b \text{csch}(c+d x)} \sqrt{i \sinh (c+d x)}}\\ &=\frac{6 b^3 \cosh (c+d x) \sqrt{b \text{csch}(c+d x)}}{5 d}-\frac{2 b \cosh (c+d x) (b \text{csch}(c+d x))^{5/2}}{5 d}+\frac{6 i b^4 E\left (\left .\frac{1}{2} \left (i c-\frac{\pi }{2}+i d x\right )\right |2\right )}{5 d \sqrt{b \text{csch}(c+d x)} \sqrt{i \sinh (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.157263, size = 79, normalized size = 0.68 \[ -\frac{2 b^3 \sqrt{b \text{csch}(c+d x)} \left (-3 \cosh (c+d x)+\coth (c+d x) \text{csch}(c+d x)+3 \sqrt{i \sinh (c+d x)} E\left (\left .\frac{1}{4} (-2 i c-2 i d x+\pi )\right |2\right )\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Csch[c + d*x])^(7/2),x]

[Out]

(-2*b^3*Sqrt[b*Csch[c + d*x]]*(-3*Cosh[c + d*x] + Coth[c + d*x]*Csch[c + d*x] + 3*EllipticE[((-2*I)*c + Pi - (
2*I)*d*x)/4, 2]*Sqrt[I*Sinh[c + d*x]]))/(5*d)

________________________________________________________________________________________

Maple [F]  time = 0.092, size = 0, normalized size = 0. \begin{align*} \int \left ( b{\rm csch} \left (dx+c\right ) \right ) ^{{\frac{7}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*csch(d*x+c))^(7/2),x)

[Out]

int((b*csch(d*x+c))^(7/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{csch}\left (d x + c\right )\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csch(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((b*csch(d*x + c))^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \operatorname{csch}\left (d x + c\right )} b^{3} \operatorname{csch}\left (d x + c\right )^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csch(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*csch(d*x + c))*b^3*csch(d*x + c)^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{csch}{\left (c + d x \right )}\right )^{\frac{7}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csch(d*x+c))**(7/2),x)

[Out]

Integral((b*csch(c + d*x))**(7/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{csch}\left (d x + c\right )\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csch(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((b*csch(d*x + c))^(7/2), x)