3.99 \(\int \frac{\text{sech}(x)}{a+b \text{sech}(x)} \, dx\)

Optimal. Leaf size=42 \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} \sqrt{a+b}} \]

[Out]

(2*ArcTan[(Sqrt[a - b]*Tanh[x/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b])

________________________________________________________________________________________

Rubi [A]  time = 0.0550791, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {3831, 2659, 205} \[ \frac{2 \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sech[x]/(a + b*Sech[x]),x]

[Out]

(2*ArcTan[(Sqrt[a - b]*Tanh[x/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b])

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}(x)}{a+b \text{sech}(x)} \, dx &=\frac{\int \frac{1}{1+\frac{a \cosh (x)}{b}} \, dx}{b}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}-\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{b}\\ &=\frac{2 \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} \sqrt{a+b}}\\ \end{align*}

Mathematica [A]  time = 0.0257107, size = 41, normalized size = 0.98 \[ -\frac{2 \tan ^{-1}\left (\frac{(b-a) \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[x]/(a + b*Sech[x]),x]

[Out]

(-2*ArcTan[((-a + b)*Tanh[x/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2]

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 36, normalized size = 0.9 \begin{align*} 2\,{\frac{1}{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tanh \left ( x/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(x)/(a+b*sech(x)),x)

[Out]

2/((a+b)*(a-b))^(1/2)*arctan((a-b)*tanh(1/2*x)/((a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(x)/(a+b*sech(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.33746, size = 446, normalized size = 10.62 \begin{align*} \left [-\frac{\sqrt{-a^{2} + b^{2}} \log \left (\frac{a^{2} \cosh \left (x\right )^{2} + a^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) - a^{2} + 2 \, b^{2} + 2 \,{\left (a^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + b\right )}}{a \cosh \left (x\right )^{2} + a \sinh \left (x\right )^{2} + 2 \, b \cosh \left (x\right ) + 2 \,{\left (a \cosh \left (x\right ) + b\right )} \sinh \left (x\right ) + a}\right )}{a^{2} - b^{2}}, -\frac{2 \, \arctan \left (-\frac{a \cosh \left (x\right ) + a \sinh \left (x\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )}{\sqrt{a^{2} - b^{2}}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(x)/(a+b*sech(x)),x, algorithm="fricas")

[Out]

[-sqrt(-a^2 + b^2)*log((a^2*cosh(x)^2 + a^2*sinh(x)^2 + 2*a*b*cosh(x) - a^2 + 2*b^2 + 2*(a^2*cosh(x) + a*b)*si
nh(x) - 2*sqrt(-a^2 + b^2)*(a*cosh(x) + a*sinh(x) + b))/(a*cosh(x)^2 + a*sinh(x)^2 + 2*b*cosh(x) + 2*(a*cosh(x
) + b)*sinh(x) + a))/(a^2 - b^2), -2*arctan(-(a*cosh(x) + a*sinh(x) + b)/sqrt(a^2 - b^2))/sqrt(a^2 - b^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}{\left (x \right )}}{a + b \operatorname{sech}{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(x)/(a+b*sech(x)),x)

[Out]

Integral(sech(x)/(a + b*sech(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.17422, size = 43, normalized size = 1.02 \begin{align*} \frac{2 \, \arctan \left (\frac{a e^{x} + b}{\sqrt{a^{2} - b^{2}}}\right )}{\sqrt{a^{2} - b^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(x)/(a+b*sech(x)),x, algorithm="giac")

[Out]

2*arctan((a*e^x + b)/sqrt(a^2 - b^2))/sqrt(a^2 - b^2)