3.65 \(\int \frac{\text{csch}^2(x)}{a+b \text{sech}(x)} \, dx\)

Optimal. Leaf size=66 \[ \frac{\text{csch}(x) (b-a \cosh (x))}{a^2-b^2}+\frac{2 a b \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2}} \]

[Out]

(2*a*b*ArcTan[(Sqrt[a - b]*Tanh[x/2])/Sqrt[a + b]])/((a - b)^(3/2)*(a + b)^(3/2)) + ((b - a*Cosh[x])*Csch[x])/
(a^2 - b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.132552, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385, Rules used = {3872, 2866, 12, 2659, 205} \[ \frac{\text{csch}(x) (b-a \cosh (x))}{a^2-b^2}+\frac{2 a b \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Csch[x]^2/(a + b*Sech[x]),x]

[Out]

(2*a*b*ArcTan[(Sqrt[a - b]*Tanh[x/2])/Sqrt[a + b]])/((a - b)^(3/2)*(a + b)^(3/2)) + ((b - a*Cosh[x])*Csch[x])/
(a^2 - b^2)

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 2866

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[((g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c - a*d - (a*c -
b*d)*Sin[e + f*x]))/(f*g*(a^2 - b^2)*(p + 1)), x] + Dist[1/(g^2*(a^2 - b^2)*(p + 1)), Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{csch}^2(x)}{a+b \text{sech}(x)} \, dx &=-\int \frac{\coth (x) \text{csch}(x)}{-b-a \cosh (x)} \, dx\\ &=\frac{(b-a \cosh (x)) \text{csch}(x)}{a^2-b^2}-\frac{\int \frac{a b}{-b-a \cosh (x)} \, dx}{a^2-b^2}\\ &=\frac{(b-a \cosh (x)) \text{csch}(x)}{a^2-b^2}-\frac{(a b) \int \frac{1}{-b-a \cosh (x)} \, dx}{a^2-b^2}\\ &=\frac{(b-a \cosh (x)) \text{csch}(x)}{a^2-b^2}-\frac{(2 a b) \operatorname{Subst}\left (\int \frac{1}{-a-b-(a-b) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{a^2-b^2}\\ &=\frac{2 a b \tan ^{-1}\left (\frac{\sqrt{a-b} \tanh \left (\frac{x}{2}\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} (a+b)^{3/2}}+\frac{(b-a \cosh (x)) \text{csch}(x)}{a^2-b^2}\\ \end{align*}

Mathematica [A]  time = 0.251885, size = 75, normalized size = 1.14 \[ \frac{1}{2} \left (-\frac{4 a b \tan ^{-1}\left (\frac{(b-a) \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2}}+\frac{\tanh \left (\frac{x}{2}\right )}{b-a}-\frac{\coth \left (\frac{x}{2}\right )}{a+b}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[x]^2/(a + b*Sech[x]),x]

[Out]

((-4*a*b*ArcTan[((-a + b)*Tanh[x/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(3/2) - Coth[x/2]/(a + b) + Tanh[x/2]/(-a +
 b))/2

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 77, normalized size = 1.2 \begin{align*} -{\frac{1}{2\,a-2\,b}\tanh \left ({\frac{x}{2}} \right ) }-{\frac{1}{2\,b+2\,a} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{-1}}+2\,{\frac{ab}{ \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tanh \left ( x/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(x)^2/(a+b*sech(x)),x)

[Out]

-1/2/(a-b)*tanh(1/2*x)-1/2/(a+b)/tanh(1/2*x)+2/(a+b)/(a-b)*a*b/((a+b)*(a-b))^(1/2)*arctan((a-b)*tanh(1/2*x)/((
a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^2/(a+b*sech(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.58839, size = 1156, normalized size = 17.52 \begin{align*} \left [\frac{2 \, a^{3} - 2 \, a b^{2} -{\left (a b \cosh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) \sinh \left (x\right ) + a b \sinh \left (x\right )^{2} - a b\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{a^{2} \cosh \left (x\right )^{2} + a^{2} \sinh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) - a^{2} + 2 \, b^{2} + 2 \,{\left (a^{2} \cosh \left (x\right ) + a b\right )} \sinh \left (x\right ) + 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cosh \left (x\right ) + a \sinh \left (x\right ) + b\right )}}{a \cosh \left (x\right )^{2} + a \sinh \left (x\right )^{2} + 2 \, b \cosh \left (x\right ) + 2 \,{\left (a \cosh \left (x\right ) + b\right )} \sinh \left (x\right ) + a}\right ) - 2 \,{\left (a^{2} b - b^{3}\right )} \cosh \left (x\right ) - 2 \,{\left (a^{2} b - b^{3}\right )} \sinh \left (x\right )}{a^{4} - 2 \, a^{2} b^{2} + b^{4} -{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right )^{2} - 2 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right ) \sinh \left (x\right ) -{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sinh \left (x\right )^{2}}, \frac{2 \,{\left (a^{3} - a b^{2} +{\left (a b \cosh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) \sinh \left (x\right ) + a b \sinh \left (x\right )^{2} - a b\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cosh \left (x\right ) + a \sinh \left (x\right ) + b}{\sqrt{a^{2} - b^{2}}}\right ) -{\left (a^{2} b - b^{3}\right )} \cosh \left (x\right ) -{\left (a^{2} b - b^{3}\right )} \sinh \left (x\right )\right )}}{a^{4} - 2 \, a^{2} b^{2} + b^{4} -{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right )^{2} - 2 \,{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \cosh \left (x\right ) \sinh \left (x\right ) -{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sinh \left (x\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^2/(a+b*sech(x)),x, algorithm="fricas")

[Out]

[(2*a^3 - 2*a*b^2 - (a*b*cosh(x)^2 + 2*a*b*cosh(x)*sinh(x) + a*b*sinh(x)^2 - a*b)*sqrt(-a^2 + b^2)*log((a^2*co
sh(x)^2 + a^2*sinh(x)^2 + 2*a*b*cosh(x) - a^2 + 2*b^2 + 2*(a^2*cosh(x) + a*b)*sinh(x) + 2*sqrt(-a^2 + b^2)*(a*
cosh(x) + a*sinh(x) + b))/(a*cosh(x)^2 + a*sinh(x)^2 + 2*b*cosh(x) + 2*(a*cosh(x) + b)*sinh(x) + a)) - 2*(a^2*
b - b^3)*cosh(x) - 2*(a^2*b - b^3)*sinh(x))/(a^4 - 2*a^2*b^2 + b^4 - (a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2 - 2*(a^
4 - 2*a^2*b^2 + b^4)*cosh(x)*sinh(x) - (a^4 - 2*a^2*b^2 + b^4)*sinh(x)^2), 2*(a^3 - a*b^2 + (a*b*cosh(x)^2 + 2
*a*b*cosh(x)*sinh(x) + a*b*sinh(x)^2 - a*b)*sqrt(a^2 - b^2)*arctan(-(a*cosh(x) + a*sinh(x) + b)/sqrt(a^2 - b^2
)) - (a^2*b - b^3)*cosh(x) - (a^2*b - b^3)*sinh(x))/(a^4 - 2*a^2*b^2 + b^4 - (a^4 - 2*a^2*b^2 + b^4)*cosh(x)^2
 - 2*(a^4 - 2*a^2*b^2 + b^4)*cosh(x)*sinh(x) - (a^4 - 2*a^2*b^2 + b^4)*sinh(x)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}^{2}{\left (x \right )}}{a + b \operatorname{sech}{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)**2/(a+b*sech(x)),x)

[Out]

Integral(csch(x)**2/(a + b*sech(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.13428, size = 86, normalized size = 1.3 \begin{align*} \frac{2 \, a b \arctan \left (\frac{a e^{x} + b}{\sqrt{a^{2} - b^{2}}}\right )}{{\left (a^{2} - b^{2}\right )}^{\frac{3}{2}}} + \frac{2 \,{\left (b e^{x} - a\right )}}{{\left (a^{2} - b^{2}\right )}{\left (e^{\left (2 \, x\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(x)^2/(a+b*sech(x)),x, algorithm="giac")

[Out]

2*a*b*arctan((a*e^x + b)/sqrt(a^2 - b^2))/(a^2 - b^2)^(3/2) + 2*(b*e^x - a)/((a^2 - b^2)*(e^(2*x) - 1))