3.200 \(\int \frac{1}{x \text{sech}^{\frac{3}{2}}(a+b \log (c x^n))} \, dx\)

Optimal. Leaf size=97 \[ \frac{2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}-\frac{2 i \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt{\cosh \left (a+b \log \left (c x^n\right )\right )} \text{EllipticF}\left (\frac{1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b n} \]

[Out]

(((-2*I)/3)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/
(b*n) + (2*Sinh[a + b*Log[c*x^n]])/(3*b*n*Sqrt[Sech[a + b*Log[c*x^n]]])

________________________________________________________________________________________

Rubi [A]  time = 0.0728327, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {3769, 3771, 2641} \[ \frac{2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}-\frac{2 i \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )} \sqrt{\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac{1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sech[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(((-2*I)/3)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2]*Sqrt[Sech[a + b*Log[c*x^n]]])/
(b*n) + (2*Sinh[a + b*Log[c*x^n]])/(3*b*n*Sqrt[Sech[a + b*Log[c*x^n]]])

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \text{sech}^{\frac{3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\text{sech}^{\frac{3}{2}}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{n}\\ &=\frac{2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}+\frac{\operatorname{Subst}\left (\int \sqrt{\text{sech}(a+b x)} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=\frac{2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}+\frac{\left (\sqrt{\cosh \left (a+b \log \left (c x^n\right )\right )} \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{\cosh (a+b x)}} \, dx,x,\log \left (c x^n\right )\right )}{3 n}\\ &=-\frac{2 i \sqrt{\cosh \left (a+b \log \left (c x^n\right )\right )} F\left (\left .\frac{1}{2} i \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}{3 b n}+\frac{2 \sinh \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )}}\\ \end{align*}

Mathematica [A]  time = 0.111447, size = 76, normalized size = 0.78 \[ \frac{\sqrt{\text{sech}\left (a+b \log \left (c x^n\right )\right )} \left (\sinh \left (2 \left (a+b \log \left (c x^n\right )\right )\right )-2 i \sqrt{\cosh \left (a+b \log \left (c x^n\right )\right )} \text{EllipticF}\left (\frac{1}{2} i \left (a+b \log \left (c x^n\right )\right ),2\right )\right )}{3 b n} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sech[a + b*Log[c*x^n]]^(3/2)),x]

[Out]

(Sqrt[Sech[a + b*Log[c*x^n]]]*((-2*I)*Sqrt[Cosh[a + b*Log[c*x^n]]]*EllipticF[(I/2)*(a + b*Log[c*x^n]), 2] + Si
nh[2*(a + b*Log[c*x^n])]))/(3*b*n)

________________________________________________________________________________________

Maple [A]  time = 0.287, size = 237, normalized size = 2.4 \begin{align*}{\frac{2}{3\,bn}\sqrt{ \left ( 2\, \left ( \cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}-1 \right ) \left ( \sinh \left ({\frac{a}{2}}+{\frac{b\ln \left ( c{x}^{n} \right ) }{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{5}-6\, \left ( \cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{3}+\sqrt{- \left ( \sinh \left ({\frac{a}{2}}+{\frac{b\ln \left ( c{x}^{n} \right ) }{2}} \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cosh \left ({\frac{a}{2}}+{\frac{b\ln \left ( c{x}^{n} \right ) }{2}} \right ) ,\sqrt{2} \right ) +2\,\cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ){\frac{1}{\sqrt{2\, \left ( \sinh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{4}+ \left ( \sinh \left ({\frac{a}{2}}+{\frac{b\ln \left ( c{x}^{n} \right ) }{2}} \right ) \right ) ^{2}}}} \left ( \sinh \left ({\frac{a}{2}}+{\frac{b\ln \left ( c{x}^{n} \right ) }{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cosh \left ( a/2+1/2\,b\ln \left ( c{x}^{n} \right ) \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/sech(a+b*ln(c*x^n))^(3/2),x)

[Out]

2/3/n*((2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)*sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(4*cosh(1/2*a+1/2*b*ln(c*x^n))
^5-6*cosh(1/2*a+1/2*b*ln(c*x^n))^3+(-sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(-2*cosh(1/2*a+1/2*b*ln(c*x^n))^2+1)
^(1/2)*EllipticF(cosh(1/2*a+1/2*b*ln(c*x^n)),2^(1/2))+2*cosh(1/2*a+1/2*b*ln(c*x^n)))/(2*sinh(1/2*a+1/2*b*ln(c*
x^n))^4+sinh(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)/sinh(1/2*a+1/2*b*ln(c*x^n))/(2*cosh(1/2*a+1/2*b*ln(c*x^n))^2-1)^(
1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \operatorname{sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{x \operatorname{sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")

[Out]

integral(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*ln(c*x**n))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \operatorname{sech}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/sech(a+b*log(c*x^n))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(x*sech(b*log(c*x^n) + a)^(3/2)), x)