3.17 \(\int (b \text{sech}(c+d x))^{3/2} \, dx\)

Optimal. Leaf size=70 \[ \frac{2 b \sinh (c+d x) \sqrt{b \text{sech}(c+d x)}}{d}+\frac{2 i b^2 E\left (\left .\frac{1}{2} i (c+d x)\right |2\right )}{d \sqrt{\cosh (c+d x)} \sqrt{b \text{sech}(c+d x)}} \]

[Out]

((2*I)*b^2*EllipticE[(I/2)*(c + d*x), 2])/(d*Sqrt[Cosh[c + d*x]]*Sqrt[b*Sech[c + d*x]]) + (2*b*Sqrt[b*Sech[c +
 d*x]]*Sinh[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0383941, antiderivative size = 70, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3768, 3771, 2639} \[ \frac{2 b \sinh (c+d x) \sqrt{b \text{sech}(c+d x)}}{d}+\frac{2 i b^2 E\left (\left .\frac{1}{2} i (c+d x)\right |2\right )}{d \sqrt{\cosh (c+d x)} \sqrt{b \text{sech}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Sech[c + d*x])^(3/2),x]

[Out]

((2*I)*b^2*EllipticE[(I/2)*(c + d*x), 2])/(d*Sqrt[Cosh[c + d*x]]*Sqrt[b*Sech[c + d*x]]) + (2*b*Sqrt[b*Sech[c +
 d*x]]*Sinh[c + d*x])/d

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int (b \text{sech}(c+d x))^{3/2} \, dx &=\frac{2 b \sqrt{b \text{sech}(c+d x)} \sinh (c+d x)}{d}-b^2 \int \frac{1}{\sqrt{b \text{sech}(c+d x)}} \, dx\\ &=\frac{2 b \sqrt{b \text{sech}(c+d x)} \sinh (c+d x)}{d}-\frac{b^2 \int \sqrt{\cosh (c+d x)} \, dx}{\sqrt{\cosh (c+d x)} \sqrt{b \text{sech}(c+d x)}}\\ &=\frac{2 i b^2 E\left (\left .\frac{1}{2} i (c+d x)\right |2\right )}{d \sqrt{\cosh (c+d x)} \sqrt{b \text{sech}(c+d x)}}+\frac{2 b \sqrt{b \text{sech}(c+d x)} \sinh (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.0393364, size = 52, normalized size = 0.74 \[ \frac{2 b \sqrt{b \text{sech}(c+d x)} \left (\sinh (c+d x)+i \sqrt{\cosh (c+d x)} E\left (\left .\frac{1}{2} i (c+d x)\right |2\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Sech[c + d*x])^(3/2),x]

[Out]

(2*b*Sqrt[b*Sech[c + d*x]]*(I*Sqrt[Cosh[c + d*x]]*EllipticE[(I/2)*(c + d*x), 2] + Sinh[c + d*x]))/d

________________________________________________________________________________________

Maple [F]  time = 0.079, size = 0, normalized size = 0. \begin{align*} \int \left ( b{\rm sech} \left (dx+c\right ) \right ) ^{{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sech(d*x+c))^(3/2),x)

[Out]

int((b*sech(d*x+c))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{sech}\left (d x + c\right )\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sech(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sech(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \operatorname{sech}\left (d x + c\right )} b \operatorname{sech}\left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sech(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sech(d*x + c))*b*sech(d*x + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{sech}{\left (c + d x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sech(d*x+c))**(3/2),x)

[Out]

Integral((b*sech(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \operatorname{sech}\left (d x + c\right )\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sech(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*sech(d*x + c))^(3/2), x)