3.150 \(\int \frac{\coth ^2(c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=665 \[ \frac{2 \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{a d \sqrt{a+b}}-\frac{(3 a-b) \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{d (a-b) (a+b)^{3/2}}+\frac{2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt{a+b \text{sech}(c+d x)}}-\frac{4 a b^2 \tanh (c+d x)}{d \left (a^2-b^2\right )^2 \sqrt{a+b \text{sech}(c+d x)}}-\frac{b^2 \tanh (c+d x)}{d \left (a^2-b^2\right ) (a+b \text{sech}(c+d x))^{3/2}}+\frac{2 \sqrt{a+b} \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^2 d}-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}-\frac{2 \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a d \sqrt{a+b}}+\frac{4 a \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d (a-b) (a+b)^{3/2}} \]

[Out]

(4*a*Coth[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech
[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/((a - b)*(a + b)^(3/2)*d) - (2*Coth[c + d*x]*El
lipticE[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*
Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d) - ((3*a - b)*Coth[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c
 + d*x]))/(a - b))])/((a - b)*(a + b)^(3/2)*d) + (2*Coth[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sech[c + d*x]]/S
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/
(a*Sqrt[a + b]*d) + (2*Sqrt[a + b]*Coth[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a
 + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a^2*
d) - Coth[c + d*x]/(d*(a + b*Sech[c + d*x])^(3/2)) - (b^2*Tanh[c + d*x])/((a^2 - b^2)*d*(a + b*Sech[c + d*x])^
(3/2)) - (4*a*b^2*Tanh[c + d*x])/((a^2 - b^2)^2*d*Sqrt[a + b*Sech[c + d*x]]) + (2*b^2*Tanh[c + d*x])/(a*(a^2 -
 b^2)*d*Sqrt[a + b*Sech[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.98349, antiderivative size = 665, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.478, Rules used = {3896, 3785, 4058, 3921, 3784, 3832, 4004, 3875, 3833, 4003, 4005} \[ \frac{2 b^2 \tanh (c+d x)}{a d \left (a^2-b^2\right ) \sqrt{a+b \text{sech}(c+d x)}}-\frac{4 a b^2 \tanh (c+d x)}{d \left (a^2-b^2\right )^2 \sqrt{a+b \text{sech}(c+d x)}}-\frac{b^2 \tanh (c+d x)}{d \left (a^2-b^2\right ) (a+b \text{sech}(c+d x))^{3/2}}+\frac{2 \sqrt{a+b} \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a^2 d}-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}+\frac{2 \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a d \sqrt{a+b}}-\frac{(3 a-b) \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d (a-b) (a+b)^{3/2}}-\frac{2 \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a d \sqrt{a+b}}+\frac{4 a \coth (c+d x) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (\text{sech}(c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d (a-b) (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Coth[c + d*x]^2/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(4*a*Coth[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech
[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/((a - b)*(a + b)^(3/2)*d) - (2*Coth[c + d*x]*El
lipticE[ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*
Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a*Sqrt[a + b]*d) - ((3*a - b)*Coth[c + d*x]*EllipticF[ArcSin[Sqrt[a
 + b*Sech[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c
 + d*x]))/(a - b))])/((a - b)*(a + b)^(3/2)*d) + (2*Coth[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sech[c + d*x]]/S
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/
(a*Sqrt[a + b]*d) + (2*Sqrt[a + b]*Coth[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a
 + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sech[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sech[c + d*x]))/(a - b))])/(a^2*
d) - Coth[c + d*x]/(d*(a + b*Sech[c + d*x])^(3/2)) - (b^2*Tanh[c + d*x])/((a^2 - b^2)*d*(a + b*Sech[c + d*x])^
(3/2)) - (4*a*b^2*Tanh[c + d*x])/((a^2 - b^2)^2*d*Sqrt[a + b*Sech[c + d*x]]) + (2*b^2*Tanh[c + d*x])/(a*(a^2 -
 b^2)*d*Sqrt[a + b*Sech[c + d*x]])

Rule 3896

Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Sec[c + d*x]^2)^(-(m/2)), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2,
 0] && ILtQ[m/2, 0] && IntegerQ[n - 1/2] && EqQ[m, -2]

Rule 3785

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n +
 1))/(a*d*(n + 1)*(a^2 - b^2)), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 3875

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)/cos[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[(Tan[e + f*x]*(a
+ b*Csc[e + f*x])^m)/f, x] + Dist[b*m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e
, f, m}, x]

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\coth ^2(c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx &=-\int \left (-\frac{1}{(a+b \text{sech}(c+d x))^{3/2}}-\frac{\text{csch}^2(c+d x)}{(a+b \text{sech}(c+d x))^{3/2}}\right ) \, dx\\ &=\int \frac{1}{(a+b \text{sech}(c+d x))^{3/2}} \, dx+\int \frac{\text{csch}^2(c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx\\ &=-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}+\frac{2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \text{sech}(c+d x)}}+\frac{1}{2} (3 b) \int \frac{\text{sech}(c+d x)}{(a+b \text{sech}(c+d x))^{5/2}} \, dx-\frac{2 \int \frac{\frac{1}{2} \left (-a^2+b^2\right )+\frac{1}{2} a b \text{sech}(c+d x)+\frac{1}{2} b^2 \text{sech}^2(c+d x)}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}-\frac{b^2 \tanh (c+d x)}{\left (a^2-b^2\right ) d (a+b \text{sech}(c+d x))^{3/2}}+\frac{2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \text{sech}(c+d x)}}-\frac{2 \int \frac{\frac{1}{2} \left (-a^2+b^2\right )+\left (\frac{a b}{2}-\frac{b^2}{2}\right ) \text{sech}(c+d x)}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{a \left (a^2-b^2\right )}-\frac{b \int \frac{\text{sech}(c+d x) \left (-\frac{3 a}{2}+\frac{1}{2} b \text{sech}(c+d x)\right )}{(a+b \text{sech}(c+d x))^{3/2}} \, dx}{a^2-b^2}-\frac{b^2 \int \frac{\text{sech}(c+d x) (1+\text{sech}(c+d x))}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac{2 \coth (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a \sqrt{a+b} d}-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}-\frac{b^2 \tanh (c+d x)}{\left (a^2-b^2\right ) d (a+b \text{sech}(c+d x))^{3/2}}-\frac{4 a b^2 \tanh (c+d x)}{\left (a^2-b^2\right )^2 d \sqrt{a+b \text{sech}(c+d x)}}+\frac{2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \text{sech}(c+d x)}}+\frac{\int \frac{1}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{a}-\frac{b \int \frac{\text{sech}(c+d x)}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{a (a+b)}+\frac{(2 b) \int \frac{\text{sech}(c+d x) \left (\frac{1}{4} \left (3 a^2+b^2\right )+a b \text{sech}(c+d x)\right )}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{\left (a^2-b^2\right )^2}\\ &=-\frac{2 \coth (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a \sqrt{a+b} d}+\frac{2 \coth (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a \sqrt{a+b} d}+\frac{2 \sqrt{a+b} \coth (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a^2 d}-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}-\frac{b^2 \tanh (c+d x)}{\left (a^2-b^2\right ) d (a+b \text{sech}(c+d x))^{3/2}}-\frac{4 a b^2 \tanh (c+d x)}{\left (a^2-b^2\right )^2 d \sqrt{a+b \text{sech}(c+d x)}}+\frac{2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \text{sech}(c+d x)}}+\frac{((3 a-b) b) \int \frac{\text{sech}(c+d x)}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{2 (a-b) (a+b)^2}+\frac{\left (2 a b^2\right ) \int \frac{\text{sech}(c+d x) (1+\text{sech}(c+d x))}{\sqrt{a+b \text{sech}(c+d x)}} \, dx}{\left (a^2-b^2\right )^2}\\ &=\frac{4 a \coth (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{(a-b) (a+b)^{3/2} d}-\frac{2 \coth (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a \sqrt{a+b} d}-\frac{(3 a-b) \coth (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{(a-b) (a+b)^{3/2} d}+\frac{2 \coth (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a \sqrt{a+b} d}+\frac{2 \sqrt{a+b} \coth (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\text{sech}(c+d x))}{a+b}} \sqrt{-\frac{b (1+\text{sech}(c+d x))}{a-b}}}{a^2 d}-\frac{\coth (c+d x)}{d (a+b \text{sech}(c+d x))^{3/2}}-\frac{b^2 \tanh (c+d x)}{\left (a^2-b^2\right ) d (a+b \text{sech}(c+d x))^{3/2}}-\frac{4 a b^2 \tanh (c+d x)}{\left (a^2-b^2\right )^2 d \sqrt{a+b \text{sech}(c+d x)}}+\frac{2 b^2 \tanh (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{a+b \text{sech}(c+d x)}}\\ \end{align*}

Mathematica [F]  time = 104.747, size = 0, normalized size = 0. \[ \int \frac{\coth ^2(c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Coth[c + d*x]^2/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

Integrate[Coth[c + d*x]^2/(a + b*Sech[c + d*x])^(3/2), x]

________________________________________________________________________________________

Maple [F]  time = 0.166, size = 0, normalized size = 0. \begin{align*} \int{ \left ({\rm coth} \left (dx+c\right ) \right ) ^{2} \left ( a+b{\rm sech} \left (dx+c\right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x)

[Out]

int(coth(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\coth \left (d x + c\right )^{2}}{{\left (b \operatorname{sech}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(coth(d*x + c)^2/(b*sech(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\coth ^{2}{\left (c + d x \right )}}{\left (a + b \operatorname{sech}{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)**2/(a+b*sech(d*x+c))**(3/2),x)

[Out]

Integral(coth(c + d*x)**2/(a + b*sech(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\coth \left (d x + c\right )^{2}}{{\left (b \operatorname{sech}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)^2/(a+b*sech(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(coth(d*x + c)^2/(b*sech(d*x + c) + a)^(3/2), x)