3.144 \(\int \frac{\tanh (c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=54 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a}}\right )}{a^{3/2} d}-\frac{2}{a d \sqrt{a+b \text{sech}(c+d x)}} \]

[Out]

(2*ArcTanh[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) - 2/(a*d*Sqrt[a + b*Sech[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0622013, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3885, 51, 63, 207} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a}}\right )}{a^{3/2} d}-\frac{2}{a d \sqrt{a+b \text{sech}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[c + d*x]/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(2*ArcTanh[Sqrt[a + b*Sech[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) - 2/(a*d*Sqrt[a + b*Sech[c + d*x]])

Rule 3885

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[((b^2 - x^2)^((m - 1)/2)*(a + x)^n)/x, x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tanh (c+d x)}{(a+b \text{sech}(c+d x))^{3/2}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{x (a+x)^{3/2}} \, dx,x,b \text{sech}(c+d x)\right )}{d}\\ &=-\frac{2}{a d \sqrt{a+b \text{sech}(c+d x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+x}} \, dx,x,b \text{sech}(c+d x)\right )}{a d}\\ &=-\frac{2}{a d \sqrt{a+b \text{sech}(c+d x)}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{-a+x^2} \, dx,x,\sqrt{a+b \text{sech}(c+d x)}\right )}{a d}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+b \text{sech}(c+d x)}}{\sqrt{a}}\right )}{a^{3/2} d}-\frac{2}{a d \sqrt{a+b \text{sech}(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.242889, size = 79, normalized size = 1.46 \[ \frac{2 \left (\frac{\sqrt{a \cosh (c+d x)+b} \tanh ^{-1}\left (\frac{\sqrt{a \cosh (c+d x)+b}}{\sqrt{a \cosh (c+d x)}}\right )}{\sqrt{a \cosh (c+d x)}}-1\right )}{a d \sqrt{a+b \text{sech}(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[c + d*x]/(a + b*Sech[c + d*x])^(3/2),x]

[Out]

(2*(-1 + (ArcTanh[Sqrt[b + a*Cosh[c + d*x]]/Sqrt[a*Cosh[c + d*x]]]*Sqrt[b + a*Cosh[c + d*x]])/Sqrt[a*Cosh[c +
d*x]]))/(a*d*Sqrt[a + b*Sech[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 46, normalized size = 0.9 \begin{align*} -{\frac{1}{d} \left ( 2\,{\frac{1}{a\sqrt{a+b{\rm sech} \left (dx+c\right )}}}-2\,{\frac{1}{{a}^{3/2}}{\it Artanh} \left ({\frac{\sqrt{a+b{\rm sech} \left (dx+c\right )}}{\sqrt{a}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x)

[Out]

-1/d*(2/a/(a+b*sech(d*x+c))^(1/2)-2/a^(3/2)*arctanh((a+b*sech(d*x+c))^(1/2)/a^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (d x + c\right )}{{\left (b \operatorname{sech}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(d*x + c)/(b*sech(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 10.0666, size = 2456, normalized size = 45.48 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + 2*b*cosh(d*x + c) + 2*(a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*
sqrt(a)*log(-(2*a^2*cosh(d*x + c)^4 + 2*a^2*sinh(d*x + c)^4 + 4*a*b*cosh(d*x + c)^3 + 4*(2*a^2*cosh(d*x + c) +
 a*b)*sinh(d*x + c)^3 + 4*a*b*cosh(d*x + c) + (4*a^2 + b^2)*cosh(d*x + c)^2 + (12*a^2*cosh(d*x + c)^2 + 12*a*b
*cosh(d*x + c) + 4*a^2 + b^2)*sinh(d*x + c)^2 + 2*a^2 + 2*(a*cosh(d*x + c)^4 + a*sinh(d*x + c)^4 + b*cosh(d*x
+ c)^3 + (4*a*cosh(d*x + c) + b)*sinh(d*x + c)^3 + 2*a*cosh(d*x + c)^2 + (6*a*cosh(d*x + c)^2 + 3*b*cosh(d*x +
 c) + 2*a)*sinh(d*x + c)^2 + b*cosh(d*x + c) + (4*a*cosh(d*x + c)^3 + 3*b*cosh(d*x + c)^2 + 4*a*cosh(d*x + c)
+ b)*sinh(d*x + c) + a)*sqrt(a)*sqrt((a*cosh(d*x + c) + b)/cosh(d*x + c)) + 2*(4*a^2*cosh(d*x + c)^3 + 6*a*b*c
osh(d*x + c)^2 + 2*a*b + (4*a^2 + b^2)*cosh(d*x + c))*sinh(d*x + c))/(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d
*x + c) + sinh(d*x + c)^2)) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*
sqrt((a*cosh(d*x + c) + b)/cosh(d*x + c)))/(a^3*d*cosh(d*x + c)^2 + a^3*d*sinh(d*x + c)^2 + 2*a^2*b*d*cosh(d*x
 + c) + a^3*d + 2*(a^3*d*cosh(d*x + c) + a^2*b*d)*sinh(d*x + c)), -((a*cosh(d*x + c)^2 + a*sinh(d*x + c)^2 + 2
*b*cosh(d*x + c) + 2*(a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*sqrt(-a)*arctan((a*cosh(d*x + c)^2 + a*sinh(d*x
+ c)^2 + b*cosh(d*x + c) + (2*a*cosh(d*x + c) + b)*sinh(d*x + c) + a)*sqrt(-a)*sqrt((a*cosh(d*x + c) + b)/cosh
(d*x + c))/(a^2*cosh(d*x + c)^2 + a^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + a^2 + 2*(a^2*cosh(d*x + c) + a*b
)*sinh(d*x + c))) + 2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a)*sqrt((a*co
sh(d*x + c) + b)/cosh(d*x + c)))/(a^3*d*cosh(d*x + c)^2 + a^3*d*sinh(d*x + c)^2 + 2*a^2*b*d*cosh(d*x + c) + a^
3*d + 2*(a^3*d*cosh(d*x + c) + a^2*b*d)*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh{\left (c + d x \right )}}{\left (a + b \operatorname{sech}{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))**(3/2),x)

[Out]

Integral(tanh(c + d*x)/(a + b*sech(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (d x + c\right )}{{\left (b \operatorname{sech}\left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)/(a+b*sech(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(tanh(d*x + c)/(b*sech(d*x + c) + a)^(3/2), x)