3.112 \(\int \frac{\coth ^4(x)}{a+a \text{sech}(x)} \, dx\)

Optimal. Leaf size=55 \[ \frac{x}{a}-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}-\frac{\coth ^3(x) (5-4 \text{sech}(x))}{15 a}-\frac{\coth (x) (15-8 \text{sech}(x))}{15 a} \]

[Out]

x/a - (Coth[x]*(15 - 8*Sech[x]))/(15*a) - (Coth[x]^3*(5 - 4*Sech[x]))/(15*a) - (Coth[x]^5*(1 - Sech[x]))/(5*a)

________________________________________________________________________________________

Rubi [A]  time = 0.120491, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {3888, 3882, 8} \[ \frac{x}{a}-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}-\frac{\coth ^3(x) (5-4 \text{sech}(x))}{15 a}-\frac{\coth (x) (15-8 \text{sech}(x))}{15 a} \]

Antiderivative was successfully verified.

[In]

Int[Coth[x]^4/(a + a*Sech[x]),x]

[Out]

x/a - (Coth[x]*(15 - 8*Sech[x]))/(15*a) - (Coth[x]^3*(5 - 4*Sech[x]))/(15*a) - (Coth[x]^5*(1 - Sech[x]))/(5*a)

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3882

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[((e*Cot[c
+ d*x])^(m + 1)*(a + b*Csc[c + d*x]))/(d*e*(m + 1)), x] - Dist[1/(e^2*(m + 1)), Int[(e*Cot[c + d*x])^(m + 2)*(
a*(m + 1) + b*(m + 2)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\coth ^4(x)}{a+a \text{sech}(x)} \, dx &=-\frac{\int \coth ^6(x) (-a+a \text{sech}(x)) \, dx}{a^2}\\ &=-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}+\frac{\int \coth ^4(x) (5 a-4 a \text{sech}(x)) \, dx}{5 a^2}\\ &=-\frac{\coth ^3(x) (5-4 \text{sech}(x))}{15 a}-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}-\frac{\int \coth ^2(x) (-15 a+8 a \text{sech}(x)) \, dx}{15 a^2}\\ &=-\frac{\coth (x) (15-8 \text{sech}(x))}{15 a}-\frac{\coth ^3(x) (5-4 \text{sech}(x))}{15 a}-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}+\frac{\int 15 a \, dx}{15 a^2}\\ &=\frac{x}{a}-\frac{\coth (x) (15-8 \text{sech}(x))}{15 a}-\frac{\coth ^3(x) (5-4 \text{sech}(x))}{15 a}-\frac{\coth ^5(x) (1-\text{sech}(x))}{5 a}\\ \end{align*}

Mathematica [A]  time = 0.102212, size = 69, normalized size = 1.25 \[ \frac{\text{csch}^3(x) \text{sech}(x) (-90 x \sinh (x)-30 x \sinh (2 x)+30 x \sinh (3 x)+15 x \sinh (4 x)+8 \cosh (x)+16 \cosh (2 x)-16 \cosh (3 x)-23 \cosh (4 x)-25)}{120 a (\text{sech}(x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]^4/(a + a*Sech[x]),x]

[Out]

(Csch[x]^3*Sech[x]*(-25 + 8*Cosh[x] + 16*Cosh[2*x] - 16*Cosh[3*x] - 23*Cosh[4*x] - 90*x*Sinh[x] - 30*x*Sinh[2*
x] + 30*x*Sinh[3*x] + 15*x*Sinh[4*x]))/(120*a*(1 + Sech[x]))

________________________________________________________________________________________

Maple [A]  time = 0.037, size = 78, normalized size = 1.4 \begin{align*} -{\frac{1}{80\,a} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{5}}-{\frac{1}{8\,a} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{3}}-{\frac{1}{a}\tanh \left ({\frac{x}{2}} \right ) }+{\frac{1}{a}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) }-{\frac{1}{48\,a} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{-3}}-{\frac{3}{8\,a} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{-1}}-{\frac{1}{a}\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^4/(a+a*sech(x)),x)

[Out]

-1/80/a*tanh(1/2*x)^5-1/8/a*tanh(1/2*x)^3-1/a*tanh(1/2*x)+1/a*ln(tanh(1/2*x)+1)-1/48/a/tanh(1/2*x)^3-3/8/a/tan
h(1/2*x)-1/a*ln(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.19771, size = 142, normalized size = 2.58 \begin{align*} \frac{x}{a} - \frac{2 \,{\left (31 \, e^{\left (-x\right )} - 31 \, e^{\left (-2 \, x\right )} - 73 \, e^{\left (-3 \, x\right )} + 25 \, e^{\left (-4 \, x\right )} + 65 \, e^{\left (-5 \, x\right )} + 15 \, e^{\left (-6 \, x\right )} - 15 \, e^{\left (-7 \, x\right )} + 23\right )}}{15 \,{\left (2 \, a e^{\left (-x\right )} - 2 \, a e^{\left (-2 \, x\right )} - 6 \, a e^{\left (-3 \, x\right )} + 6 \, a e^{\left (-5 \, x\right )} + 2 \, a e^{\left (-6 \, x\right )} - 2 \, a e^{\left (-7 \, x\right )} - a e^{\left (-8 \, x\right )} + a\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^4/(a+a*sech(x)),x, algorithm="maxima")

[Out]

x/a - 2/15*(31*e^(-x) - 31*e^(-2*x) - 73*e^(-3*x) + 25*e^(-4*x) + 65*e^(-5*x) + 15*e^(-6*x) - 15*e^(-7*x) + 23
)/(2*a*e^(-x) - 2*a*e^(-2*x) - 6*a*e^(-3*x) + 6*a*e^(-5*x) + 2*a*e^(-6*x) - 2*a*e^(-7*x) - a*e^(-8*x) + a)

________________________________________________________________________________________

Fricas [B]  time = 2.44348, size = 502, normalized size = 9.13 \begin{align*} -\frac{23 \, \cosh \left (x\right )^{4} - 2 \,{\left (2 \,{\left (15 \, x + 23\right )} \cosh \left (x\right ) + 15 \, x + 23\right )} \sinh \left (x\right )^{3} + 23 \, \sinh \left (x\right )^{4} + 16 \, \cosh \left (x\right )^{3} + 2 \,{\left (69 \, \cosh \left (x\right )^{2} + 24 \, \cosh \left (x\right ) - 8\right )} \sinh \left (x\right )^{2} - 16 \, \cosh \left (x\right )^{2} - 2 \,{\left (2 \,{\left (15 \, x + 23\right )} \cosh \left (x\right )^{3} + 3 \,{\left (15 \, x + 23\right )} \cosh \left (x\right )^{2} - 2 \,{\left (15 \, x + 23\right )} \cosh \left (x\right ) - 45 \, x - 69\right )} \sinh \left (x\right ) - 8 \, \cosh \left (x\right ) + 25}{30 \,{\left ({\left (2 \, a \cosh \left (x\right ) + a\right )} \sinh \left (x\right )^{3} +{\left (2 \, a \cosh \left (x\right )^{3} + 3 \, a \cosh \left (x\right )^{2} - 2 \, a \cosh \left (x\right ) - 3 \, a\right )} \sinh \left (x\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^4/(a+a*sech(x)),x, algorithm="fricas")

[Out]

-1/30*(23*cosh(x)^4 - 2*(2*(15*x + 23)*cosh(x) + 15*x + 23)*sinh(x)^3 + 23*sinh(x)^4 + 16*cosh(x)^3 + 2*(69*co
sh(x)^2 + 24*cosh(x) - 8)*sinh(x)^2 - 16*cosh(x)^2 - 2*(2*(15*x + 23)*cosh(x)^3 + 3*(15*x + 23)*cosh(x)^2 - 2*
(15*x + 23)*cosh(x) - 45*x - 69)*sinh(x) - 8*cosh(x) + 25)/((2*a*cosh(x) + a)*sinh(x)^3 + (2*a*cosh(x)^3 + 3*a
*cosh(x)^2 - 2*a*cosh(x) - 3*a)*sinh(x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\coth ^{4}{\left (x \right )}}{\operatorname{sech}{\left (x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)**4/(a+a*sech(x)),x)

[Out]

Integral(coth(x)**4/(sech(x) + 1), x)/a

________________________________________________________________________________________

Giac [A]  time = 1.11255, size = 86, normalized size = 1.56 \begin{align*} \frac{x}{a} - \frac{21 \, e^{\left (2 \, x\right )} - 36 \, e^{x} + 19}{24 \, a{\left (e^{x} - 1\right )}^{3}} + \frac{115 \, e^{\left (4 \, x\right )} + 380 \, e^{\left (3 \, x\right )} + 530 \, e^{\left (2 \, x\right )} + 340 \, e^{x} + 91}{40 \, a{\left (e^{x} + 1\right )}^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^4/(a+a*sech(x)),x, algorithm="giac")

[Out]

x/a - 1/24*(21*e^(2*x) - 36*e^x + 19)/(a*(e^x - 1)^3) + 1/40*(115*e^(4*x) + 380*e^(3*x) + 530*e^(2*x) + 340*e^
x + 91)/(a*(e^x + 1)^5)