3.76 \(\int \frac{1}{(1+\coth (x))^{5/2}} \, dx\)

Optimal. Leaf size=61 \[ -\frac{1}{4 \sqrt{\coth (x)+1}}-\frac{1}{6 (\coth (x)+1)^{3/2}}-\frac{1}{5 (\coth (x)+1)^{5/2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )}{4 \sqrt{2}} \]

[Out]

ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]]/(4*Sqrt[2]) - 1/(5*(1 + Coth[x])^(5/2)) - 1/(6*(1 + Coth[x])^(3/2)) - 1/(4*
Sqrt[1 + Coth[x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0419238, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.375, Rules used = {3479, 3480, 206} \[ -\frac{1}{4 \sqrt{\coth (x)+1}}-\frac{1}{6 (\coth (x)+1)^{3/2}}-\frac{1}{5 (\coth (x)+1)^{5/2}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )}{4 \sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Coth[x])^(-5/2),x]

[Out]

ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]]/(4*Sqrt[2]) - 1/(5*(1 + Coth[x])^(5/2)) - 1/(6*(1 + Coth[x])^(3/2)) - 1/(4*
Sqrt[1 + Coth[x]])

Rule 3479

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a + b*Tan[c + d*x])^n)/(2*b*d*n), x] +
Dist[1/(2*a), Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(1+\coth (x))^{5/2}} \, dx &=-\frac{1}{5 (1+\coth (x))^{5/2}}+\frac{1}{2} \int \frac{1}{(1+\coth (x))^{3/2}} \, dx\\ &=-\frac{1}{5 (1+\coth (x))^{5/2}}-\frac{1}{6 (1+\coth (x))^{3/2}}+\frac{1}{4} \int \frac{1}{\sqrt{1+\coth (x)}} \, dx\\ &=-\frac{1}{5 (1+\coth (x))^{5/2}}-\frac{1}{6 (1+\coth (x))^{3/2}}-\frac{1}{4 \sqrt{1+\coth (x)}}+\frac{1}{8} \int \sqrt{1+\coth (x)} \, dx\\ &=-\frac{1}{5 (1+\coth (x))^{5/2}}-\frac{1}{6 (1+\coth (x))^{3/2}}-\frac{1}{4 \sqrt{1+\coth (x)}}+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\coth (x)}\right )\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{1+\coth (x)}}{\sqrt{2}}\right )}{4 \sqrt{2}}-\frac{1}{5 (1+\coth (x))^{5/2}}-\frac{1}{6 (1+\coth (x))^{3/2}}-\frac{1}{4 \sqrt{1+\coth (x)}}\\ \end{align*}

Mathematica [C]  time = 0.757937, size = 94, normalized size = 1.54 \[ -\frac{1}{60} \sqrt{\coth (x)+1} (\cosh (3 x)-\sinh (3 x)) (-24 \sinh (x)+13 \sinh (3 x)-10 \cosh (x)+10 \cosh (3 x))+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (\coth (x)+1)^{3/2} \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt{i (\coth (x)+1)}\right )}{(i (\coth (x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + Coth[x])^(-5/2),x]

[Out]

((1/8 + I/8)*ArcTan[(1/2 + I/2)*Sqrt[I*(1 + Coth[x])]]*(1 + Coth[x])^(3/2))/(I*(1 + Coth[x]))^(3/2) - (Sqrt[1
+ Coth[x]]*(Cosh[3*x] - Sinh[3*x])*(-10*Cosh[x] + 10*Cosh[3*x] - 24*Sinh[x] + 13*Sinh[3*x]))/60

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 43, normalized size = 0.7 \begin{align*} -{\frac{1}{5} \left ( 1+{\rm coth} \left (x\right ) \right ) ^{-{\frac{5}{2}}}}-{\frac{1}{6} \left ( 1+{\rm coth} \left (x\right ) \right ) ^{-{\frac{3}{2}}}}+{\frac{\sqrt{2}}{8}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{1+{\rm coth} \left (x\right )}} \right ) }-{\frac{1}{4}{\frac{1}{\sqrt{1+{\rm coth} \left (x\right )}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+coth(x))^(5/2),x)

[Out]

-1/5/(1+coth(x))^(5/2)-1/6/(1+coth(x))^(3/2)+1/8*arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-1/4/(1+coth(x)
)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (\coth \left (x\right ) + 1\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+coth(x))^(5/2),x, algorithm="maxima")

[Out]

integrate((coth(x) + 1)^(-5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.45624, size = 919, normalized size = 15.07 \begin{align*} -\frac{2 \, \sqrt{2}{\left (23 \, \sqrt{2} \cosh \left (x\right )^{4} + 92 \, \sqrt{2} \cosh \left (x\right ) \sinh \left (x\right )^{3} + 23 \, \sqrt{2} \sinh \left (x\right )^{4} +{\left (138 \, \sqrt{2} \cosh \left (x\right )^{2} - 11 \, \sqrt{2}\right )} \sinh \left (x\right )^{2} - 11 \, \sqrt{2} \cosh \left (x\right )^{2} + 2 \,{\left (46 \, \sqrt{2} \cosh \left (x\right )^{3} - 11 \, \sqrt{2} \cosh \left (x\right )\right )} \sinh \left (x\right ) + 3 \, \sqrt{2}\right )} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} - 15 \,{\left (\sqrt{2} \cosh \left (x\right )^{5} + 5 \, \sqrt{2} \cosh \left (x\right )^{4} \sinh \left (x\right ) + 10 \, \sqrt{2} \cosh \left (x\right )^{3} \sinh \left (x\right )^{2} + 10 \, \sqrt{2} \cosh \left (x\right )^{2} \sinh \left (x\right )^{3} + 5 \, \sqrt{2} \cosh \left (x\right ) \sinh \left (x\right )^{4} + \sqrt{2} \sinh \left (x\right )^{5}\right )} \log \left (2 \, \sqrt{2} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}}{\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} + 2 \, \cosh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right ) + 2 \, \sinh \left (x\right )^{2} - 1\right )}{240 \,{\left (\cosh \left (x\right )^{5} + 5 \, \cosh \left (x\right )^{4} \sinh \left (x\right ) + 10 \, \cosh \left (x\right )^{3} \sinh \left (x\right )^{2} + 10 \, \cosh \left (x\right )^{2} \sinh \left (x\right )^{3} + 5 \, \cosh \left (x\right ) \sinh \left (x\right )^{4} + \sinh \left (x\right )^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+coth(x))^(5/2),x, algorithm="fricas")

[Out]

-1/240*(2*sqrt(2)*(23*sqrt(2)*cosh(x)^4 + 92*sqrt(2)*cosh(x)*sinh(x)^3 + 23*sqrt(2)*sinh(x)^4 + (138*sqrt(2)*c
osh(x)^2 - 11*sqrt(2))*sinh(x)^2 - 11*sqrt(2)*cosh(x)^2 + 2*(46*sqrt(2)*cosh(x)^3 - 11*sqrt(2)*cosh(x))*sinh(x
) + 3*sqrt(2))*sqrt(sinh(x)/(cosh(x) - sinh(x))) - 15*(sqrt(2)*cosh(x)^5 + 5*sqrt(2)*cosh(x)^4*sinh(x) + 10*sq
rt(2)*cosh(x)^3*sinh(x)^2 + 10*sqrt(2)*cosh(x)^2*sinh(x)^3 + 5*sqrt(2)*cosh(x)*sinh(x)^4 + sqrt(2)*sinh(x)^5)*
log(2*sqrt(2)*sqrt(sinh(x)/(cosh(x) - sinh(x)))*(cosh(x) + sinh(x)) + 2*cosh(x)^2 + 4*cosh(x)*sinh(x) + 2*sinh
(x)^2 - 1))/(cosh(x)^5 + 5*cosh(x)^4*sinh(x) + 10*cosh(x)^3*sinh(x)^2 + 10*cosh(x)^2*sinh(x)^3 + 5*cosh(x)*sin
h(x)^4 + sinh(x)^5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (\coth{\left (x \right )} + 1\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+coth(x))**(5/2),x)

[Out]

Integral((coth(x) + 1)**(-5/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.22279, size = 242, normalized size = 3.97 \begin{align*} -\frac{1}{240} \, \sqrt{2}{\left (\frac{15 \, \log \left ({\left | 2 \, \sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 2 \, e^{\left (2 \, x\right )} + 1 \right |}\right )}{\mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )} - \frac{2 \,{\left (45 \,{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{4} + 45 \,{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{3} + 35 \,{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{2} + 15 \, \sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 15 \, e^{\left (2 \, x\right )} + 3\right )}}{{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{5} \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )} - 46 \, \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+coth(x))^(5/2),x, algorithm="giac")

[Out]

-1/240*sqrt(2)*(15*log(abs(2*sqrt(e^(4*x) - e^(2*x)) - 2*e^(2*x) + 1))/sgn(e^(2*x) - 1) - 2*(45*(sqrt(e^(4*x)
- e^(2*x)) - e^(2*x))^4 + 45*(sqrt(e^(4*x) - e^(2*x)) - e^(2*x))^3 + 35*(sqrt(e^(4*x) - e^(2*x)) - e^(2*x))^2
+ 15*sqrt(e^(4*x) - e^(2*x)) - 15*e^(2*x) + 3)/((sqrt(e^(4*x) - e^(2*x)) - e^(2*x))^5*sgn(e^(2*x) - 1)) - 46*s
gn(e^(2*x) - 1))