3.32 \(\int \frac{1}{(b \coth ^3(c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=141 \[ -\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \tan ^{-1}\left (\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \tanh ^{-1}\left (\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}} \]

[Out]

-2/(3*b*d*Sqrt[b*Coth[c + d*x]^3]) + (ArcTan[Sqrt[Coth[c + d*x]]]*Coth[c + d*x]^(3/2))/(b*d*Sqrt[b*Coth[c + d*
x]^3]) + (ArcTanh[Sqrt[Coth[c + d*x]]]*Coth[c + d*x]^(3/2))/(b*d*Sqrt[b*Coth[c + d*x]^3]) - (2*Tanh[c + d*x]^2
)/(7*b*d*Sqrt[b*Coth[c + d*x]^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0608829, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {3658, 3474, 3476, 329, 212, 206, 203} \[ -\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \tan ^{-1}\left (\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \tanh ^{-1}\left (\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Coth[c + d*x]^3)^(-3/2),x]

[Out]

-2/(3*b*d*Sqrt[b*Coth[c + d*x]^3]) + (ArcTan[Sqrt[Coth[c + d*x]]]*Coth[c + d*x]^(3/2))/(b*d*Sqrt[b*Coth[c + d*
x]^3]) + (ArcTanh[Sqrt[Coth[c + d*x]]]*Coth[c + d*x]^(3/2))/(b*d*Sqrt[b*Coth[c + d*x]^3]) - (2*Tanh[c + d*x]^2
)/(7*b*d*Sqrt[b*Coth[c + d*x]^3])

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\left (b \coth ^3(c+d x)\right )^{3/2}} \, dx &=\frac{\coth ^{\frac{3}{2}}(c+d x) \int \frac{1}{\coth ^{\frac{9}{2}}(c+d x)} \, dx}{b \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \int \frac{1}{\coth ^{\frac{5}{2}}(c+d x)} \, dx}{b \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \int \frac{1}{\sqrt{\coth (c+d x)}} \, dx}{b \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}-\frac{\coth ^{\frac{3}{2}}(c+d x) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (-1+x^2\right )} \, dx,x,\coth (c+d x)\right )}{b d \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}-\frac{\left (2 \coth ^{\frac{3}{2}}(c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{-1+x^4} \, dx,x,\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}}+\frac{\coth ^{\frac{3}{2}}(c+d x) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{\coth (c+d x)}\right )}{b d \sqrt{b \coth ^3(c+d x)}}\\ &=-\frac{2}{3 b d \sqrt{b \coth ^3(c+d x)}}+\frac{\tan ^{-1}\left (\sqrt{\coth (c+d x)}\right ) \coth ^{\frac{3}{2}}(c+d x)}{b d \sqrt{b \coth ^3(c+d x)}}+\frac{\tanh ^{-1}\left (\sqrt{\coth (c+d x)}\right ) \coth ^{\frac{3}{2}}(c+d x)}{b d \sqrt{b \coth ^3(c+d x)}}-\frac{2 \tanh ^2(c+d x)}{7 b d \sqrt{b \coth ^3(c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.0653703, size = 43, normalized size = 0.3 \[ -\frac{2 \coth (c+d x) \, _2F_1\left (-\frac{7}{4},1;-\frac{3}{4};\coth ^2(c+d x)\right )}{7 d \left (b \coth ^3(c+d x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Coth[c + d*x]^3)^(-3/2),x]

[Out]

(-2*Coth[c + d*x]*Hypergeometric2F1[-7/4, 1, -3/4, Coth[c + d*x]^2])/(7*d*(b*Coth[c + d*x]^3)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 106, normalized size = 0.8 \begin{align*}{\frac{{\rm coth} \left (dx+c\right )}{21\,d} \left ( -14\,{b}^{15/2} \left ({\rm coth} \left (dx+c\right ) \right ) ^{2}-6\,{b}^{15/2}+21\,{\it Artanh} \left ({\frac{\sqrt{b{\rm coth} \left (dx+c\right )}}{\sqrt{b}}} \right ){b}^{4} \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{7/2}+21\,\arctan \left ({\frac{\sqrt{b{\rm coth} \left (dx+c\right )}}{\sqrt{b}}} \right ){b}^{4} \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{7/2} \right ){b}^{-{\frac{15}{2}}} \left ( b \left ({\rm coth} \left (dx+c\right ) \right ) ^{3} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*coth(d*x+c)^3)^(3/2),x)

[Out]

1/21/d*coth(d*x+c)/b^(15/2)*(-14*b^(15/2)*coth(d*x+c)^2-6*b^(15/2)+21*arctanh((b*coth(d*x+c))^(1/2)/b^(1/2))*b
^4*(b*coth(d*x+c))^(7/2)+21*arctan((b*coth(d*x+c))^(1/2)/b^(1/2))*b^4*(b*coth(d*x+c))^(7/2))/(b*coth(d*x+c)^3)
^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \coth \left (d x + c\right )^{3}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c)^3)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*coth(d*x + c)^3)^(-3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.94701, size = 8204, normalized size = 58.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c)^3)^(3/2),x, algorithm="fricas")

[Out]

[-1/84*(42*(cosh(d*x + c)^8 + 8*cosh(d*x + c)*sinh(d*x + c)^7 + sinh(d*x + c)^8 + 4*(7*cosh(d*x + c)^2 + 1)*si
nh(d*x + c)^6 + 4*cosh(d*x + c)^6 + 8*(7*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*cosh(d*x +
 c)^4 + 30*cosh(d*x + c)^2 + 3)*sinh(d*x + c)^4 + 6*cosh(d*x + c)^4 + 8*(7*cosh(d*x + c)^5 + 10*cosh(d*x + c)^
3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*cosh(d*x + c)^6 + 15*cosh(d*x + c)^4 + 9*cosh(d*x + c)^2 + 1)*sinh
(d*x + c)^2 + 4*cosh(d*x + c)^2 + 8*(cosh(d*x + c)^7 + 3*cosh(d*x + c)^5 + 3*cosh(d*x + c)^3 + cosh(d*x + c))*
sinh(d*x + c) + 1)*sqrt(-b)*arctan((cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*sqrt(-b
)*sqrt(b*cosh(d*x + c)/sinh(d*x + c))/(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2
 + b)) + 21*(cosh(d*x + c)^8 + 8*cosh(d*x + c)*sinh(d*x + c)^7 + sinh(d*x + c)^8 + 4*(7*cosh(d*x + c)^2 + 1)*s
inh(d*x + c)^6 + 4*cosh(d*x + c)^6 + 8*(7*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*cosh(d*x
+ c)^4 + 30*cosh(d*x + c)^2 + 3)*sinh(d*x + c)^4 + 6*cosh(d*x + c)^4 + 8*(7*cosh(d*x + c)^5 + 10*cosh(d*x + c)
^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*cosh(d*x + c)^6 + 15*cosh(d*x + c)^4 + 9*cosh(d*x + c)^2 + 1)*sin
h(d*x + c)^2 + 4*cosh(d*x + c)^2 + 8*(cosh(d*x + c)^7 + 3*cosh(d*x + c)^5 + 3*cosh(d*x + c)^3 + cosh(d*x + c))
*sinh(d*x + c) + 1)*sqrt(-b)*log(-(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)^3*sinh(d*x + c) + 6*b*cosh(d*x + c)^2
*sinh(d*x + c)^2 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(cosh(d*x + c)^2 + 2*cosh(d*x + c
)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*sqrt(-b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)) - 2*b)/(cosh(d*x + c)^4 +
4*cosh(d*x + c)^3*sinh(d*x + c) + 6*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d
*x + c)^4)) + 16*(5*cosh(d*x + c)^8 + 40*cosh(d*x + c)*sinh(d*x + c)^7 + 5*sinh(d*x + c)^8 + 2*(70*cosh(d*x +
c)^2 - 3)*sinh(d*x + c)^6 - 6*cosh(d*x + c)^6 + 4*(70*cosh(d*x + c)^3 - 9*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(
175*cosh(d*x + c)^4 - 45*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^4 + 2*cosh(d*x + c)^4 + 8*(35*cosh(d*x + c)^5 - 15
*cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c)^3 + 2*(70*cosh(d*x + c)^6 - 45*cosh(d*x + c)^4 + 6*cosh(d*x +
c)^2 - 3)*sinh(d*x + c)^2 - 6*cosh(d*x + c)^2 + 4*(10*cosh(d*x + c)^7 - 9*cosh(d*x + c)^5 + 2*cosh(d*x + c)^3
- 3*cosh(d*x + c))*sinh(d*x + c) + 5)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)))/(b^2*d*cosh(d*x + c)^8 + 8*b^2*d*co
sh(d*x + c)*sinh(d*x + c)^7 + b^2*d*sinh(d*x + c)^8 + 4*b^2*d*cosh(d*x + c)^6 + 6*b^2*d*cosh(d*x + c)^4 + 4*(7
*b^2*d*cosh(d*x + c)^2 + b^2*d)*sinh(d*x + c)^6 + 8*(7*b^2*d*cosh(d*x + c)^3 + 3*b^2*d*cosh(d*x + c))*sinh(d*x
 + c)^5 + 4*b^2*d*cosh(d*x + c)^2 + 2*(35*b^2*d*cosh(d*x + c)^4 + 30*b^2*d*cosh(d*x + c)^2 + 3*b^2*d)*sinh(d*x
 + c)^4 + 8*(7*b^2*d*cosh(d*x + c)^5 + 10*b^2*d*cosh(d*x + c)^3 + 3*b^2*d*cosh(d*x + c))*sinh(d*x + c)^3 + b^2
*d + 4*(7*b^2*d*cosh(d*x + c)^6 + 15*b^2*d*cosh(d*x + c)^4 + 9*b^2*d*cosh(d*x + c)^2 + b^2*d)*sinh(d*x + c)^2
+ 8*(b^2*d*cosh(d*x + c)^7 + 3*b^2*d*cosh(d*x + c)^5 + 3*b^2*d*cosh(d*x + c)^3 + b^2*d*cosh(d*x + c))*sinh(d*x
 + c)), 1/84*(42*(cosh(d*x + c)^8 + 8*cosh(d*x + c)*sinh(d*x + c)^7 + sinh(d*x + c)^8 + 4*(7*cosh(d*x + c)^2 +
 1)*sinh(d*x + c)^6 + 4*cosh(d*x + c)^6 + 8*(7*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*cosh
(d*x + c)^4 + 30*cosh(d*x + c)^2 + 3)*sinh(d*x + c)^4 + 6*cosh(d*x + c)^4 + 8*(7*cosh(d*x + c)^5 + 10*cosh(d*x
 + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*cosh(d*x + c)^6 + 15*cosh(d*x + c)^4 + 9*cosh(d*x + c)^2 + 1
)*sinh(d*x + c)^2 + 4*cosh(d*x + c)^2 + 8*(cosh(d*x + c)^7 + 3*cosh(d*x + c)^5 + 3*cosh(d*x + c)^3 + cosh(d*x
+ c))*sinh(d*x + c) + 1)*sqrt(b)*arctan(sqrt(b)*sqrt(b*cosh(d*x + c)/sinh(d*x + c))/(b*cosh(d*x + c)^2 + 2*b*c
osh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)) + 21*(cosh(d*x + c)^8 + 8*cosh(d*x + c)*sinh(d*x + c)^7 +
 sinh(d*x + c)^8 + 4*(7*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^6 + 4*cosh(d*x + c)^6 + 8*(7*cosh(d*x + c)^3 + 3*co
sh(d*x + c))*sinh(d*x + c)^5 + 2*(35*cosh(d*x + c)^4 + 30*cosh(d*x + c)^2 + 3)*sinh(d*x + c)^4 + 6*cosh(d*x +
c)^4 + 8*(7*cosh(d*x + c)^5 + 10*cosh(d*x + c)^3 + 3*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*cosh(d*x + c)^6 + 1
5*cosh(d*x + c)^4 + 9*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^2 + 4*cosh(d*x + c)^2 + 8*(cosh(d*x + c)^7 + 3*cosh(d
*x + c)^5 + 3*cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c) + 1)*sqrt(b)*log(2*b*cosh(d*x + c)^4 + 8*b*cosh(d
*x + c)^3*sinh(d*x + c) + 12*b*cosh(d*x + c)^2*sinh(d*x + c)^2 + 8*b*cosh(d*x + c)*sinh(d*x + c)^3 + 2*b*sinh(
d*x + c)^4 + 2*(cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + (6*cosh(d*x + c)^2 - 1)*
sinh(d*x + c)^2 - cosh(d*x + c)^2 + 2*(2*cosh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c))*sqrt(b)*sqrt(b*cosh(d
*x + c)/sinh(d*x + c)) - b) - 16*(5*cosh(d*x + c)^8 + 40*cosh(d*x + c)*sinh(d*x + c)^7 + 5*sinh(d*x + c)^8 + 2
*(70*cosh(d*x + c)^2 - 3)*sinh(d*x + c)^6 - 6*cosh(d*x + c)^6 + 4*(70*cosh(d*x + c)^3 - 9*cosh(d*x + c))*sinh(
d*x + c)^5 + 2*(175*cosh(d*x + c)^4 - 45*cosh(d*x + c)^2 + 1)*sinh(d*x + c)^4 + 2*cosh(d*x + c)^4 + 8*(35*cosh
(d*x + c)^5 - 15*cosh(d*x + c)^3 + cosh(d*x + c))*sinh(d*x + c)^3 + 2*(70*cosh(d*x + c)^6 - 45*cosh(d*x + c)^4
 + 6*cosh(d*x + c)^2 - 3)*sinh(d*x + c)^2 - 6*cosh(d*x + c)^2 + 4*(10*cosh(d*x + c)^7 - 9*cosh(d*x + c)^5 + 2*
cosh(d*x + c)^3 - 3*cosh(d*x + c))*sinh(d*x + c) + 5)*sqrt(b*cosh(d*x + c)/sinh(d*x + c)))/(b^2*d*cosh(d*x + c
)^8 + 8*b^2*d*cosh(d*x + c)*sinh(d*x + c)^7 + b^2*d*sinh(d*x + c)^8 + 4*b^2*d*cosh(d*x + c)^6 + 6*b^2*d*cosh(d
*x + c)^4 + 4*(7*b^2*d*cosh(d*x + c)^2 + b^2*d)*sinh(d*x + c)^6 + 8*(7*b^2*d*cosh(d*x + c)^3 + 3*b^2*d*cosh(d*
x + c))*sinh(d*x + c)^5 + 4*b^2*d*cosh(d*x + c)^2 + 2*(35*b^2*d*cosh(d*x + c)^4 + 30*b^2*d*cosh(d*x + c)^2 + 3
*b^2*d)*sinh(d*x + c)^4 + 8*(7*b^2*d*cosh(d*x + c)^5 + 10*b^2*d*cosh(d*x + c)^3 + 3*b^2*d*cosh(d*x + c))*sinh(
d*x + c)^3 + b^2*d + 4*(7*b^2*d*cosh(d*x + c)^6 + 15*b^2*d*cosh(d*x + c)^4 + 9*b^2*d*cosh(d*x + c)^2 + b^2*d)*
sinh(d*x + c)^2 + 8*(b^2*d*cosh(d*x + c)^7 + 3*b^2*d*cosh(d*x + c)^5 + 3*b^2*d*cosh(d*x + c)^3 + b^2*d*cosh(d*
x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \coth ^{3}{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c)**3)**(3/2),x)

[Out]

Integral((b*coth(c + d*x)**3)**(-3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c)^3)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError