3.137 \(\int \coth ^2(x) \sqrt{1+\coth (x)} \, dx\)

Optimal. Leaf size=34 \[ \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )-\frac{2}{3} (\coth (x)+1)^{3/2} \]

[Out]

Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - (2*(1 + Coth[x])^(3/2))/3

________________________________________________________________________________________

Rubi [A]  time = 0.0478325, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {3543, 3480, 206} \[ \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )-\frac{2}{3} (\coth (x)+1)^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[Coth[x]^2*Sqrt[1 + Coth[x]],x]

[Out]

Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - (2*(1 + Coth[x])^(3/2))/3

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \coth ^2(x) \sqrt{1+\coth (x)} \, dx &=-\frac{2}{3} (1+\coth (x))^{3/2}+\int \sqrt{1+\coth (x)} \, dx\\ &=-\frac{2}{3} (1+\coth (x))^{3/2}+2 \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\coth (x)}\right )\\ &=\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{1+\coth (x)}}{\sqrt{2}}\right )-\frac{2}{3} (1+\coth (x))^{3/2}\\ \end{align*}

Mathematica [C]  time = 0.168769, size = 61, normalized size = 1.79 \[ \frac{-2 \coth ^2(x)-4 \coth (x)-(3+3 i) \sqrt{i (\coth (x)+1)} \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt{i (\coth (x)+1)}\right )-2}{3 \sqrt{\coth (x)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]^2*Sqrt[1 + Coth[x]],x]

[Out]

(-2 - 4*Coth[x] - 2*Coth[x]^2 - (3 + 3*I)*ArcTan[(1/2 + I/2)*Sqrt[I*(1 + Coth[x])]]*Sqrt[I*(1 + Coth[x])])/(3*
Sqrt[1 + Coth[x]])

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 26, normalized size = 0.8 \begin{align*} -{\frac{2}{3} \left ( 1+{\rm coth} \left (x\right ) \right ) ^{{\frac{3}{2}}}}+{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{1+{\rm coth} \left (x\right )}} \right ) \sqrt{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^2*(1+coth(x))^(1/2),x)

[Out]

-2/3*(1+coth(x))^(3/2)+arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\coth \left (x\right ) + 1} \coth \left (x\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^2*(1+coth(x))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(coth(x) + 1)*coth(x)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 3.16877, size = 817, normalized size = 24.03 \begin{align*} -\frac{8 \, \sqrt{2}{\left (\sqrt{2} \cosh \left (x\right )^{3} + 3 \, \sqrt{2} \cosh \left (x\right )^{2} \sinh \left (x\right ) + 3 \, \sqrt{2} \cosh \left (x\right ) \sinh \left (x\right )^{2} + \sqrt{2} \sinh \left (x\right )^{3}\right )} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} - 3 \,{\left (\sqrt{2} \cosh \left (x\right )^{4} + 4 \, \sqrt{2} \cosh \left (x\right ) \sinh \left (x\right )^{3} + \sqrt{2} \sinh \left (x\right )^{4} + 2 \,{\left (3 \, \sqrt{2} \cosh \left (x\right )^{2} - \sqrt{2}\right )} \sinh \left (x\right )^{2} - 2 \, \sqrt{2} \cosh \left (x\right )^{2} + 4 \,{\left (\sqrt{2} \cosh \left (x\right )^{3} - \sqrt{2} \cosh \left (x\right )\right )} \sinh \left (x\right ) + \sqrt{2}\right )} \log \left (2 \, \sqrt{2} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}}{\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} + 2 \, \cosh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right ) + 2 \, \sinh \left (x\right )^{2} - 1\right )}{6 \,{\left (\cosh \left (x\right )^{4} + 4 \, \cosh \left (x\right ) \sinh \left (x\right )^{3} + \sinh \left (x\right )^{4} + 2 \,{\left (3 \, \cosh \left (x\right )^{2} - 1\right )} \sinh \left (x\right )^{2} - 2 \, \cosh \left (x\right )^{2} + 4 \,{\left (\cosh \left (x\right )^{3} - \cosh \left (x\right )\right )} \sinh \left (x\right ) + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^2*(1+coth(x))^(1/2),x, algorithm="fricas")

[Out]

-1/6*(8*sqrt(2)*(sqrt(2)*cosh(x)^3 + 3*sqrt(2)*cosh(x)^2*sinh(x) + 3*sqrt(2)*cosh(x)*sinh(x)^2 + sqrt(2)*sinh(
x)^3)*sqrt(sinh(x)/(cosh(x) - sinh(x))) - 3*(sqrt(2)*cosh(x)^4 + 4*sqrt(2)*cosh(x)*sinh(x)^3 + sqrt(2)*sinh(x)
^4 + 2*(3*sqrt(2)*cosh(x)^2 - sqrt(2))*sinh(x)^2 - 2*sqrt(2)*cosh(x)^2 + 4*(sqrt(2)*cosh(x)^3 - sqrt(2)*cosh(x
))*sinh(x) + sqrt(2))*log(2*sqrt(2)*sqrt(sinh(x)/(cosh(x) - sinh(x)))*(cosh(x) + sinh(x)) + 2*cosh(x)^2 + 4*co
sh(x)*sinh(x) + 2*sinh(x)^2 - 1))/(cosh(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 - 1)*sinh(x)^2
 - 2*cosh(x)^2 + 4*(cosh(x)^3 - cosh(x))*sinh(x) + 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\coth{\left (x \right )} + 1} \coth ^{2}{\left (x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)**2*(1+coth(x))**(1/2),x)

[Out]

Integral(sqrt(coth(x) + 1)*coth(x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.18143, size = 180, normalized size = 5.29 \begin{align*} -\frac{1}{6} \, \sqrt{2}{\left (3 \, \log \left ({\left | 2 \, \sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 2 \, e^{\left (2 \, x\right )} + 1 \right |}\right ) \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right ) + \frac{8 \,{\left (3 \,{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )}^{2} \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right ) + 3 \,{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )}\right )} \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right ) + \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )\right )}}{{\left (\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )} + 1\right )}^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^2*(1+coth(x))^(1/2),x, algorithm="giac")

[Out]

-1/6*sqrt(2)*(3*log(abs(2*sqrt(e^(4*x) - e^(2*x)) - 2*e^(2*x) + 1))*sgn(e^(2*x) - 1) + 8*(3*(sqrt(e^(4*x) - e^
(2*x)) - e^(2*x))^2*sgn(e^(2*x) - 1) + 3*(sqrt(e^(4*x) - e^(2*x)) - e^(2*x))*sgn(e^(2*x) - 1) + sgn(e^(2*x) -
1))/(sqrt(e^(4*x) - e^(2*x)) - e^(2*x) + 1)^3)