3.133 \(\int \coth (x) \sqrt{1+\coth (x)} \, dx\)

Optimal. Leaf size=32 \[ \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )-2 \sqrt{\coth (x)+1} \]

[Out]

Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - 2*Sqrt[1 + Coth[x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0381682, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {3527, 3480, 206} \[ \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\coth (x)+1}}{\sqrt{2}}\right )-2 \sqrt{\coth (x)+1} \]

Antiderivative was successfully verified.

[In]

Int[Coth[x]*Sqrt[1 + Coth[x]],x]

[Out]

Sqrt[2]*ArcTanh[Sqrt[1 + Coth[x]]/Sqrt[2]] - 2*Sqrt[1 + Coth[x]]

Rule 3527

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d*
(a + b*Tan[e + f*x])^m)/(f*m), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \coth (x) \sqrt{1+\coth (x)} \, dx &=-2 \sqrt{1+\coth (x)}+\int \sqrt{1+\coth (x)} \, dx\\ &=-2 \sqrt{1+\coth (x)}+2 \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\coth (x)}\right )\\ &=\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{1+\coth (x)}}{\sqrt{2}}\right )-2 \sqrt{1+\coth (x)}\\ \end{align*}

Mathematica [C]  time = 0.119345, size = 53, normalized size = 1.66 \[ (1+i) \sqrt{\coth (x)+1} \left (-\frac{i \tan ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) \sqrt{i (\coth (x)+1)}\right )}{\sqrt{i (\coth (x)+1)}}-(1-i)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]*Sqrt[1 + Coth[x]],x]

[Out]

(1 + I)*Sqrt[1 + Coth[x]]*((-1 + I) - (I*ArcTan[(1/2 + I/2)*Sqrt[I*(1 + Coth[x])]])/Sqrt[I*(1 + Coth[x])])

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 26, normalized size = 0.8 \begin{align*}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{1+{\rm coth} \left (x\right )}} \right ) \sqrt{2}-2\,\sqrt{1+{\rm coth} \left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)*(1+coth(x))^(1/2),x)

[Out]

arctanh(1/2*(1+coth(x))^(1/2)*2^(1/2))*2^(1/2)-2*(1+coth(x))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\coth \left (x\right ) + 1} \coth \left (x\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(coth(x) + 1)*coth(x), x)

________________________________________________________________________________________

Fricas [B]  time = 2.89116, size = 455, normalized size = 14.22 \begin{align*} -\frac{4 \, \sqrt{2}{\left (\sqrt{2} \cosh \left (x\right ) + \sqrt{2} \sinh \left (x\right )\right )} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}} -{\left (\sqrt{2} \cosh \left (x\right )^{2} + 2 \, \sqrt{2} \cosh \left (x\right ) \sinh \left (x\right ) + \sqrt{2} \sinh \left (x\right )^{2} - \sqrt{2}\right )} \log \left (2 \, \sqrt{2} \sqrt{\frac{\sinh \left (x\right )}{\cosh \left (x\right ) - \sinh \left (x\right )}}{\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} + 2 \, \cosh \left (x\right )^{2} + 4 \, \cosh \left (x\right ) \sinh \left (x\right ) + 2 \, \sinh \left (x\right )^{2} - 1\right )}{2 \,{\left (\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*(sqrt(2)*cosh(x) + sqrt(2)*sinh(x))*sqrt(sinh(x)/(cosh(x) - sinh(x))) - (sqrt(2)*cosh(x)^2 + 2
*sqrt(2)*cosh(x)*sinh(x) + sqrt(2)*sinh(x)^2 - sqrt(2))*log(2*sqrt(2)*sqrt(sinh(x)/(cosh(x) - sinh(x)))*(cosh(
x) + sinh(x)) + 2*cosh(x)^2 + 4*cosh(x)*sinh(x) + 2*sinh(x)^2 - 1))/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2
 - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\coth{\left (x \right )} + 1} \coth{\left (x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))**(1/2),x)

[Out]

Integral(sqrt(coth(x) + 1)*coth(x), x)

________________________________________________________________________________________

Giac [B]  time = 1.1659, size = 96, normalized size = 3. \begin{align*} -\frac{1}{2} \, \sqrt{2}{\left (\log \left ({\left | 2 \, \sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - 2 \, e^{\left (2 \, x\right )} + 1 \right |}\right ) \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right ) + \frac{4 \, \mathrm{sgn}\left (e^{\left (2 \, x\right )} - 1\right )}{\sqrt{e^{\left (4 \, x\right )} - e^{\left (2 \, x\right )}} - e^{\left (2 \, x\right )} + 1}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)*(1+coth(x))^(1/2),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(log(abs(2*sqrt(e^(4*x) - e^(2*x)) - 2*e^(2*x) + 1))*sgn(e^(2*x) - 1) + 4*sgn(e^(2*x) - 1)/(sqrt(
e^(4*x) - e^(2*x)) - e^(2*x) + 1))