3.12 \(\int \frac{1}{\sqrt [3]{b \coth (c+d x)}} \, dx\)

Optimal. Leaf size=132 \[ -\frac{\log \left (b^{2/3}-(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}+\frac{\log \left (b^{2/3} (b \coth (c+d x))^{2/3}+b^{4/3}+(b \coth (c+d x))^{4/3}\right )}{4 \sqrt [3]{b} d}+\frac{\sqrt{3} \tan ^{-1}\left (\frac{b^{2/3}+2 (b \coth (c+d x))^{2/3}}{\sqrt{3} b^{2/3}}\right )}{2 \sqrt [3]{b} d} \]

[Out]

(Sqrt[3]*ArcTan[(b^(2/3) + 2*(b*Coth[c + d*x])^(2/3))/(Sqrt[3]*b^(2/3))])/(2*b^(1/3)*d) - Log[b^(2/3) - (b*Cot
h[c + d*x])^(2/3)]/(2*b^(1/3)*d) + Log[b^(4/3) + b^(2/3)*(b*Coth[c + d*x])^(2/3) + (b*Coth[c + d*x])^(4/3)]/(4
*b^(1/3)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.10391, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.75, Rules used = {3476, 329, 275, 200, 31, 634, 617, 204, 628} \[ -\frac{\log \left (b^{2/3}-(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}+\frac{\log \left (b^{2/3} (b \coth (c+d x))^{2/3}+b^{4/3}+(b \coth (c+d x))^{4/3}\right )}{4 \sqrt [3]{b} d}+\frac{\sqrt{3} \tan ^{-1}\left (\frac{b^{2/3}+2 (b \coth (c+d x))^{2/3}}{\sqrt{3} b^{2/3}}\right )}{2 \sqrt [3]{b} d} \]

Antiderivative was successfully verified.

[In]

Int[(b*Coth[c + d*x])^(-1/3),x]

[Out]

(Sqrt[3]*ArcTan[(b^(2/3) + 2*(b*Coth[c + d*x])^(2/3))/(Sqrt[3]*b^(2/3))])/(2*b^(1/3)*d) - Log[b^(2/3) - (b*Cot
h[c + d*x])^(2/3)]/(2*b^(1/3)*d) + Log[b^(4/3) + b^(2/3)*(b*Coth[c + d*x])^(2/3) + (b*Coth[c + d*x])^(4/3)]/(4
*b^(1/3)*d)

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt [3]{b \coth (c+d x)}} \, dx &=-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{x} \left (-b^2+x^2\right )} \, dx,x,b \coth (c+d x)\right )}{d}\\ &=-\frac{(3 b) \operatorname{Subst}\left (\int \frac{x}{-b^2+x^6} \, dx,x,\sqrt [3]{b \coth (c+d x)}\right )}{d}\\ &=-\frac{(3 b) \operatorname{Subst}\left (\int \frac{1}{-b^2+x^3} \, dx,x,(b \coth (c+d x))^{2/3}\right )}{2 d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{-b^{2/3}+x} \, dx,x,(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}-\frac{\operatorname{Subst}\left (\int \frac{-2 b^{2/3}-x}{b^{4/3}+b^{2/3} x+x^2} \, dx,x,(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}\\ &=-\frac{\log \left (b^{2/3}-(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}+\frac{\operatorname{Subst}\left (\int \frac{b^{2/3}+2 x}{b^{4/3}+b^{2/3} x+x^2} \, dx,x,(b \coth (c+d x))^{2/3}\right )}{4 \sqrt [3]{b} d}+\frac{\left (3 \sqrt [3]{b}\right ) \operatorname{Subst}\left (\int \frac{1}{b^{4/3}+b^{2/3} x+x^2} \, dx,x,(b \coth (c+d x))^{2/3}\right )}{4 d}\\ &=-\frac{\log \left (b^{2/3}-(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}+\frac{\log \left (b^{4/3}+b^{2/3} (b \coth (c+d x))^{2/3}+(b \coth (c+d x))^{4/3}\right )}{4 \sqrt [3]{b} d}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 (b \coth (c+d x))^{2/3}}{b^{2/3}}\right )}{2 \sqrt [3]{b} d}\\ &=\frac{\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2 (b \coth (c+d x))^{2/3}}{b^{2/3}}}{\sqrt{3}}\right )}{2 \sqrt [3]{b} d}-\frac{\log \left (b^{2/3}-(b \coth (c+d x))^{2/3}\right )}{2 \sqrt [3]{b} d}+\frac{\log \left (b^{4/3}+b^{2/3} (b \coth (c+d x))^{2/3}+(b \coth (c+d x))^{4/3}\right )}{4 \sqrt [3]{b} d}\\ \end{align*}

Mathematica [A]  time = 0.120959, size = 98, normalized size = 0.74 \[ \frac{\sqrt [3]{\coth (c+d x)} \left (-2 \log \left (1-\coth ^{\frac{2}{3}}(c+d x)\right )+\log \left (\coth ^{\frac{4}{3}}(c+d x)+\coth ^{\frac{2}{3}}(c+d x)+1\right )+2 \sqrt{3} \tan ^{-1}\left (\frac{2 \coth ^{\frac{2}{3}}(c+d x)+1}{\sqrt{3}}\right )\right )}{4 d \sqrt [3]{b \coth (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Coth[c + d*x])^(-1/3),x]

[Out]

(Coth[c + d*x]^(1/3)*(2*Sqrt[3]*ArcTan[(1 + 2*Coth[c + d*x]^(2/3))/Sqrt[3]] - 2*Log[1 - Coth[c + d*x]^(2/3)] +
 Log[1 + Coth[c + d*x]^(2/3) + Coth[c + d*x]^(4/3)]))/(4*d*(b*Coth[c + d*x])^(1/3))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 115, normalized size = 0.9 \begin{align*} -{\frac{b}{2\,d}\ln \left ( \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{{\frac{2}{3}}}-\sqrt [3]{{b}^{2}} \right ) \left ({b}^{2} \right ) ^{-{\frac{2}{3}}}}+{\frac{b}{4\,d}\ln \left ( \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{{\frac{4}{3}}}+\sqrt [3]{{b}^{2}} \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{{\frac{2}{3}}}+ \left ({b}^{2} \right ) ^{{\frac{2}{3}}} \right ) \left ({b}^{2} \right ) ^{-{\frac{2}{3}}}}+{\frac{b\sqrt{3}}{2\,d}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{\frac{ \left ( b{\rm coth} \left (dx+c\right ) \right ) ^{2/3}}{\sqrt [3]{{b}^{2}}}}+1 \right ) } \right ) \left ({b}^{2} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*coth(d*x+c))^(1/3),x)

[Out]

-1/2*b/d/(b^2)^(2/3)*ln((b*coth(d*x+c))^(2/3)-(b^2)^(1/3))+1/4*b/d/(b^2)^(2/3)*ln((b*coth(d*x+c))^(4/3)+(b^2)^
(1/3)*(b*coth(d*x+c))^(2/3)+(b^2)^(2/3))+1/2*b/d/(b^2)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(b^2)^(1/3)*(b*coth
(d*x+c))^(2/3)+1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \coth \left (d x + c\right )\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((b*coth(d*x + c))^(-1/3), x)

________________________________________________________________________________________

Fricas [B]  time = 2.23023, size = 4398, normalized size = 33.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

[1/4*(sqrt(3)*b*sqrt((-b)^(1/3)/b)*log((3*b*cosh(d*x + c)^4 + 12*b*cosh(d*x + c)*sinh(d*x + c)^3 + 3*b*sinh(d*
x + c)^4 + 2*b*cosh(d*x + c)^2 + 2*(9*b*cosh(d*x + c)^2 + b)*sinh(d*x + c)^2 + 3*(cosh(d*x + c)^4 + 4*cosh(d*x
 + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + 2*(3*cosh(d*x + c)^2 - 1)*sinh(d*x + c)^2 - 2*cosh(d*x + c)^2 + 4*(c
osh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c) + 1)*(-b)^(1/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3) - sqrt(3)*
((cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)^4 + 2*(3*cosh(d*x + c)^2 - 1)*sinh(d*x + c
)^2 - 2*cosh(d*x + c)^2 + 4*(cosh(d*x + c)^3 - cosh(d*x + c))*sinh(d*x + c) + 1)*(-b)^(2/3)*(b*cosh(d*x + c)/s
inh(d*x + c))^(2/3) - (b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*b*cosh(d*
x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 - b*cosh(d*x + c))*sinh(d*x + c)
 + b)*(-b)^(1/3) - 2*(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)^3*sinh(d*x + c) + 6*b*cosh(d*x + c)^2*sinh(d*x + c
)^2 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - b)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3))*sqrt((
-b)^(1/3)/b) + 4*(3*b*cosh(d*x + c)^3 + b*cosh(d*x + c))*sinh(d*x + c) + 3*b)/(cosh(d*x + c)^2 + 2*cosh(d*x +
c)*sinh(d*x + c) + sinh(d*x + c)^2)) - 2*(-b)^(2/3)*log(-(-b)^(2/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) +
 (-b)^(2/3)*log(((cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*
x + c)/sinh(d*x + c))^(2/3) - (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(-
b)^(1/3) + (b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*(b*cosh(d*x + c)/sinh
(d*x + c))^(1/3))/(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)))/(b*d), 1/4*(2*sqrt
(3)*b*sqrt(-(-b)^(1/3)/b)*arctan((2*sqrt(3)*(cosh(d*x + c)^4 + 4*cosh(d*x + c)*sinh(d*x + c)^3 + sinh(d*x + c)
^4 + 2*(3*cosh(d*x + c)^2 - 1)*sinh(d*x + c)^2 - 2*cosh(d*x + c)^2 + 4*(cosh(d*x + c)^3 - cosh(d*x + c))*sinh(
d*x + c) + 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3)*sqrt(-(-b)^(1/3)/b) + sqrt(3)*(b*cosh(d*x + c)^
4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - 2*b*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 - b)*
sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 - b*cosh(d*x + c))*sinh(d*x + c) + b)*(-b)^(1/3)*sqrt(-(-b)^(1/3)/b) -
4*sqrt(3)*(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)^3*sinh(d*x + c) + 6*b*cosh(d*x + c)^2*sinh(d*x + c)^2 + 4*b*c
osh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 - b)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3)*sqrt(-(-b)^(1/3)/b
))/(9*b*cosh(d*x + c)^4 + 36*b*cosh(d*x + c)*sinh(d*x + c)^3 + 9*b*sinh(d*x + c)^4 + 14*b*cosh(d*x + c)^2 + 2*
(27*b*cosh(d*x + c)^2 + 7*b)*sinh(d*x + c)^2 + 4*(9*b*cosh(d*x + c)^3 + 7*b*cosh(d*x + c))*sinh(d*x + c) + 9*b
)) - 2*(-b)^(2/3)*log(-(-b)^(2/3) + (b*cosh(d*x + c)/sinh(d*x + c))^(2/3)) + (-b)^(2/3)*log(((cosh(d*x + c)^2
+ 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*(-b)^(2/3)*(b*cosh(d*x + c)/sinh(d*x + c))^(2/3) - (b*c
osh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*(-b)^(1/3) + (b*cosh(d*x + c)^2 + 2*
b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + b)*(b*cosh(d*x + c)/sinh(d*x + c))^(1/3))/(cosh(d*x + c)^2
 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)))/(b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt [3]{b \coth{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))**(1/3),x)

[Out]

Integral((b*coth(c + d*x))**(-1/3), x)

________________________________________________________________________________________

Giac [B]  time = 1.64217, size = 292, normalized size = 2.21 \begin{align*} \frac{b{\left (\frac{2 \, \sqrt{3}{\left | b \right |}^{\frac{2}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, \left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + b}{e^{\left (2 \, d x + 2 \, c\right )} - 1}\right )^{\frac{2}{3}} +{\left | b \right |}^{\frac{2}{3}}\right )}}{3 \,{\left | b \right |}^{\frac{2}{3}}}\right )}{b^{2}} + \frac{{\left | b \right |}^{\frac{2}{3}} \log \left (\left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + b}{e^{\left (2 \, d x + 2 \, c\right )} - 1}\right )^{\frac{2}{3}}{\left | b \right |}^{\frac{2}{3}} +{\left | b \right |}^{\frac{4}{3}} + \frac{{\left (b e^{\left (2 \, d x + 2 \, c\right )} + b\right )} \left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + b}{e^{\left (2 \, d x + 2 \, c\right )} - 1}\right )^{\frac{1}{3}}}{e^{\left (2 \, d x + 2 \, c\right )} - 1}\right )}{b^{2}} - \frac{2 \,{\left | b \right |}^{\frac{2}{3}} \log \left ({\left | \left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + b}{e^{\left (2 \, d x + 2 \, c\right )} - 1}\right )^{\frac{2}{3}} -{\left | b \right |}^{\frac{2}{3}} \right |}\right )}{b^{2}}\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*coth(d*x+c))^(1/3),x, algorithm="giac")

[Out]

1/4*b*(2*sqrt(3)*abs(b)^(2/3)*arctan(1/3*sqrt(3)*(2*((b*e^(2*d*x + 2*c) + b)/(e^(2*d*x + 2*c) - 1))^(2/3) + ab
s(b)^(2/3))/abs(b)^(2/3))/b^2 + abs(b)^(2/3)*log(((b*e^(2*d*x + 2*c) + b)/(e^(2*d*x + 2*c) - 1))^(2/3)*abs(b)^
(2/3) + abs(b)^(4/3) + (b*e^(2*d*x + 2*c) + b)*((b*e^(2*d*x + 2*c) + b)/(e^(2*d*x + 2*c) - 1))^(1/3)/(e^(2*d*x
 + 2*c) - 1))/b^2 - 2*abs(b)^(2/3)*log(abs(((b*e^(2*d*x + 2*c) + b)/(e^(2*d*x + 2*c) - 1))^(2/3) - abs(b)^(2/3
)))/b^2)/d