3.39 \(\int \frac{1}{\sqrt{a \tanh ^4(x)}} \, dx\)

Optimal. Leaf size=31 \[ \frac{x \tanh ^2(x)}{\sqrt{a \tanh ^4(x)}}-\frac{\tanh (x)}{\sqrt{a \tanh ^4(x)}} \]

[Out]

-(Tanh[x]/Sqrt[a*Tanh[x]^4]) + (x*Tanh[x]^2)/Sqrt[a*Tanh[x]^4]

________________________________________________________________________________________

Rubi [A]  time = 0.0138879, antiderivative size = 31, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {3658, 3473, 8} \[ \frac{x \tanh ^2(x)}{\sqrt{a \tanh ^4(x)}}-\frac{\tanh (x)}{\sqrt{a \tanh ^4(x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a*Tanh[x]^4],x]

[Out]

-(Tanh[x]/Sqrt[a*Tanh[x]^4]) + (x*Tanh[x]^2)/Sqrt[a*Tanh[x]^4]

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a \tanh ^4(x)}} \, dx &=\frac{\tanh ^2(x) \int \coth ^2(x) \, dx}{\sqrt{a \tanh ^4(x)}}\\ &=-\frac{\tanh (x)}{\sqrt{a \tanh ^4(x)}}+\frac{\tanh ^2(x) \int 1 \, dx}{\sqrt{a \tanh ^4(x)}}\\ &=-\frac{\tanh (x)}{\sqrt{a \tanh ^4(x)}}+\frac{x \tanh ^2(x)}{\sqrt{a \tanh ^4(x)}}\\ \end{align*}

Mathematica [A]  time = 0.0332763, size = 19, normalized size = 0.61 \[ \frac{\tanh (x) (x \tanh (x)-1)}{\sqrt{a \tanh ^4(x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a*Tanh[x]^4],x]

[Out]

(Tanh[x]*(-1 + x*Tanh[x]))/Sqrt[a*Tanh[x]^4]

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 32, normalized size = 1. \begin{align*}{\frac{\tanh \left ( x \right ) \left ( \ln \left ( 1+\tanh \left ( x \right ) \right ) \tanh \left ( x \right ) -\ln \left ( \tanh \left ( x \right ) -1 \right ) \tanh \left ( x \right ) -2 \right ) }{2}{\frac{1}{\sqrt{a \left ( \tanh \left ( x \right ) \right ) ^{4}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*tanh(x)^4)^(1/2),x)

[Out]

1/2*tanh(x)*(ln(1+tanh(x))*tanh(x)-ln(tanh(x)-1)*tanh(x)-2)/(a*tanh(x)^4)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.64758, size = 31, normalized size = 1. \begin{align*} \frac{x}{\sqrt{a}} + \frac{2 \, \sqrt{a}}{a e^{\left (-2 \, x\right )} - a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*tanh(x)^4)^(1/2),x, algorithm="maxima")

[Out]

x/sqrt(a) + 2*sqrt(a)/(a*e^(-2*x) - a)

________________________________________________________________________________________

Fricas [B]  time = 2.13279, size = 668, normalized size = 21.55 \begin{align*} \frac{{\left (x \cosh \left (x\right )^{2} +{\left (x e^{\left (4 \, x\right )} + 2 \, x e^{\left (2 \, x\right )} + x\right )} \sinh \left (x\right )^{2} +{\left (x \cosh \left (x\right )^{2} - x - 2\right )} e^{\left (4 \, x\right )} + 2 \,{\left (x \cosh \left (x\right )^{2} - x - 2\right )} e^{\left (2 \, x\right )} + 2 \,{\left (x \cosh \left (x\right ) e^{\left (4 \, x\right )} + 2 \, x \cosh \left (x\right ) e^{\left (2 \, x\right )} + x \cosh \left (x\right )\right )} \sinh \left (x\right ) - x - 2\right )} \sqrt{\frac{a e^{\left (8 \, x\right )} - 4 \, a e^{\left (6 \, x\right )} + 6 \, a e^{\left (4 \, x\right )} - 4 \, a e^{\left (2 \, x\right )} + a}{e^{\left (8 \, x\right )} + 4 \, e^{\left (6 \, x\right )} + 6 \, e^{\left (4 \, x\right )} + 4 \, e^{\left (2 \, x\right )} + 1}}}{a \cosh \left (x\right )^{2} +{\left (a e^{\left (4 \, x\right )} - 2 \, a e^{\left (2 \, x\right )} + a\right )} \sinh \left (x\right )^{2} +{\left (a \cosh \left (x\right )^{2} - a\right )} e^{\left (4 \, x\right )} - 2 \,{\left (a \cosh \left (x\right )^{2} - a\right )} e^{\left (2 \, x\right )} + 2 \,{\left (a \cosh \left (x\right ) e^{\left (4 \, x\right )} - 2 \, a \cosh \left (x\right ) e^{\left (2 \, x\right )} + a \cosh \left (x\right )\right )} \sinh \left (x\right ) - a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*tanh(x)^4)^(1/2),x, algorithm="fricas")

[Out]

(x*cosh(x)^2 + (x*e^(4*x) + 2*x*e^(2*x) + x)*sinh(x)^2 + (x*cosh(x)^2 - x - 2)*e^(4*x) + 2*(x*cosh(x)^2 - x -
2)*e^(2*x) + 2*(x*cosh(x)*e^(4*x) + 2*x*cosh(x)*e^(2*x) + x*cosh(x))*sinh(x) - x - 2)*sqrt((a*e^(8*x) - 4*a*e^
(6*x) + 6*a*e^(4*x) - 4*a*e^(2*x) + a)/(e^(8*x) + 4*e^(6*x) + 6*e^(4*x) + 4*e^(2*x) + 1))/(a*cosh(x)^2 + (a*e^
(4*x) - 2*a*e^(2*x) + a)*sinh(x)^2 + (a*cosh(x)^2 - a)*e^(4*x) - 2*(a*cosh(x)^2 - a)*e^(2*x) + 2*(a*cosh(x)*e^
(4*x) - 2*a*cosh(x)*e^(2*x) + a*cosh(x))*sinh(x) - a)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \tanh ^{4}{\left (x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*tanh(x)**4)**(1/2),x)

[Out]

Integral(1/sqrt(a*tanh(x)**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.26143, size = 26, normalized size = 0.84 \begin{align*} \frac{x}{\sqrt{a}} - \frac{2}{\sqrt{a}{\left (e^{\left (2 \, x\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*tanh(x)^4)^(1/2),x, algorithm="giac")

[Out]

x/sqrt(a) - 2/(sqrt(a)*(e^(2*x) - 1))