3.34 \(\int (a \tanh ^3(x))^{3/2} \, dx\)

Optimal. Leaf size=86 \[ -\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}-\frac{2}{3} a \sqrt{a \tanh ^3(x)}+\frac{a \tanh ^{-1}\left (\sqrt{\tanh (x)}\right ) \sqrt{a \tanh ^3(x)}}{\tanh ^{\frac{3}{2}}(x)}-\frac{a \sqrt{a \tanh ^3(x)} \tan ^{-1}\left (\sqrt{\tanh (x)}\right )}{\tanh ^{\frac{3}{2}}(x)} \]

[Out]

(-2*a*Sqrt[a*Tanh[x]^3])/3 - (a*ArcTan[Sqrt[Tanh[x]]]*Sqrt[a*Tanh[x]^3])/Tanh[x]^(3/2) + (a*ArcTanh[Sqrt[Tanh[
x]]]*Sqrt[a*Tanh[x]^3])/Tanh[x]^(3/2) - (2*a*Tanh[x]^2*Sqrt[a*Tanh[x]^3])/7

________________________________________________________________________________________

Rubi [A]  time = 0.0366665, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.7, Rules used = {3658, 3473, 3476, 329, 298, 203, 206} \[ -\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}-\frac{2}{3} a \sqrt{a \tanh ^3(x)}+\frac{a \tanh ^{-1}\left (\sqrt{\tanh (x)}\right ) \sqrt{a \tanh ^3(x)}}{\tanh ^{\frac{3}{2}}(x)}-\frac{a \sqrt{a \tanh ^3(x)} \tan ^{-1}\left (\sqrt{\tanh (x)}\right )}{\tanh ^{\frac{3}{2}}(x)} \]

Antiderivative was successfully verified.

[In]

Int[(a*Tanh[x]^3)^(3/2),x]

[Out]

(-2*a*Sqrt[a*Tanh[x]^3])/3 - (a*ArcTan[Sqrt[Tanh[x]]]*Sqrt[a*Tanh[x]^3])/Tanh[x]^(3/2) + (a*ArcTanh[Sqrt[Tanh[
x]]]*Sqrt[a*Tanh[x]^3])/Tanh[x]^(3/2) - (2*a*Tanh[x]^2*Sqrt[a*Tanh[x]^3])/7

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \left (a \tanh ^3(x)\right )^{3/2} \, dx &=\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \int \tanh ^{\frac{9}{2}}(x) \, dx}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}+\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \int \tanh ^{\frac{5}{2}}(x) \, dx}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{3} a \sqrt{a \tanh ^3(x)}-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}+\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \int \sqrt{\tanh (x)} \, dx}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{3} a \sqrt{a \tanh ^3(x)}-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}-\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{-1+x^2} \, dx,x,\tanh (x)\right )}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{3} a \sqrt{a \tanh ^3(x)}-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}-\frac{\left (2 a \sqrt{a \tanh ^3(x)}\right ) \operatorname{Subst}\left (\int \frac{x^2}{-1+x^4} \, dx,x,\sqrt{\tanh (x)}\right )}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{3} a \sqrt{a \tanh ^3(x)}-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}+\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{\tanh (x)}\right )}{\tanh ^{\frac{3}{2}}(x)}-\frac{\left (a \sqrt{a \tanh ^3(x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{\tanh (x)}\right )}{\tanh ^{\frac{3}{2}}(x)}\\ &=-\frac{2}{3} a \sqrt{a \tanh ^3(x)}-\frac{a \tan ^{-1}\left (\sqrt{\tanh (x)}\right ) \sqrt{a \tanh ^3(x)}}{\tanh ^{\frac{3}{2}}(x)}+\frac{a \tanh ^{-1}\left (\sqrt{\tanh (x)}\right ) \sqrt{a \tanh ^3(x)}}{\tanh ^{\frac{3}{2}}(x)}-\frac{2}{7} a \tanh ^2(x) \sqrt{a \tanh ^3(x)}\\ \end{align*}

Mathematica [A]  time = 0.0590554, size = 55, normalized size = 0.64 \[ -\frac{\left (a \tanh ^3(x)\right )^{3/2} \left (6 \tanh ^{\frac{7}{2}}(x)+14 \tanh ^{\frac{3}{2}}(x)-21 \tanh ^{-1}\left (\sqrt{\tanh (x)}\right )+21 \tan ^{-1}\left (\sqrt{\tanh (x)}\right )\right )}{21 \tanh ^{\frac{9}{2}}(x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Tanh[x]^3)^(3/2),x]

[Out]

-((a*Tanh[x]^3)^(3/2)*(21*ArcTan[Sqrt[Tanh[x]]] - 21*ArcTanh[Sqrt[Tanh[x]]] + 14*Tanh[x]^(3/2) + 6*Tanh[x]^(7/
2)))/(21*Tanh[x]^(9/2))

________________________________________________________________________________________

Maple [A]  time = 0.03, size = 76, normalized size = 0.9 \begin{align*}{\frac{1}{21\, \left ( \tanh \left ( x \right ) \right ) ^{3}{a}^{2}} \left ( a \left ( \tanh \left ( x \right ) \right ) ^{3} \right ) ^{{\frac{3}{2}}} \left ( 21\,{a}^{7/2}{\it Artanh} \left ({\frac{\sqrt{a\tanh \left ( x \right ) }}{\sqrt{a}}} \right ) -21\,{a}^{7/2}\arctan \left ({\frac{\sqrt{a\tanh \left ( x \right ) }}{\sqrt{a}}} \right ) -6\, \left ( a\tanh \left ( x \right ) \right ) ^{7/2}-14\,{a}^{2} \left ( a\tanh \left ( x \right ) \right ) ^{3/2} \right ) \left ( a\tanh \left ( x \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*tanh(x)^3)^(3/2),x)

[Out]

1/21*(a*tanh(x)^3)^(3/2)*(21*a^(7/2)*arctanh((a*tanh(x))^(1/2)/a^(1/2))-21*a^(7/2)*arctan((a*tanh(x))^(1/2)/a^
(1/2))-6*(a*tanh(x))^(7/2)-14*a^2*(a*tanh(x))^(3/2))/tanh(x)^3/(a*tanh(x))^(3/2)/a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \tanh \left (x\right )^{3}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^3)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*tanh(x)^3)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.7242, size = 4099, normalized size = 47.66 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^3)^(3/2),x, algorithm="fricas")

[Out]

[-1/84*(42*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^
4 + 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^
2 + 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(-a)*arctan((cosh(x)^2 + 2*cosh(x)*sinh(x) +
sinh(x)^2)*sqrt(-a)*sqrt(a*sinh(x)/cosh(x))/(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)) - 21*(a*cos
h(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^4 + 4*(5*a*cosh(x
)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^2 + 6*(a*cosh(x)^
5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(-a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)^3*sinh(x) + 6*a*cosh(x)^2
*sinh(x)^2 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 - 2*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a)*
sqrt(a*sinh(x)/cosh(x)) - 2*a)/(cosh(x)^4 + 4*cosh(x)^3*sinh(x) + 6*cosh(x)^2*sinh(x)^2 + 4*cosh(x)*sinh(x)^3
+ sinh(x)^4)) + 16*(5*a*cosh(x)^6 + 30*a*cosh(x)*sinh(x)^5 + 5*a*sinh(x)^6 - a*cosh(x)^4 + (75*a*cosh(x)^2 - a
)*sinh(x)^4 + 4*(25*a*cosh(x)^3 - a*cosh(x))*sinh(x)^3 + a*cosh(x)^2 + (75*a*cosh(x)^4 - 6*a*cosh(x)^2 + a)*si
nh(x)^2 + 2*(15*a*cosh(x)^5 - 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) - 5*a)*sqrt(a*sinh(x)/cosh(x)))/(cosh(x)^6 +
6*cosh(x)*sinh(x)^5 + sinh(x)^6 + 3*(5*cosh(x)^2 + 1)*sinh(x)^4 + 3*cosh(x)^4 + 4*(5*cosh(x)^3 + 3*cosh(x))*si
nh(x)^3 + 3*(5*cosh(x)^4 + 6*cosh(x)^2 + 1)*sinh(x)^2 + 3*cosh(x)^2 + 6*(cosh(x)^5 + 2*cosh(x)^3 + cosh(x))*si
nh(x) + 1), -1/84*(42*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 +
a)*sinh(x)^4 + 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 +
a)*sinh(x)^2 + 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(a)*arctan((cosh(x)^2 + 2*cosh(x)*
sinh(x) + sinh(x)^2 + 1)*sqrt(a*sinh(x)/cosh(x))/sqrt(a)) - 21*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x
)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^4 + 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x
)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^2 + 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) +
a)*sqrt(a)*log(2*a*cosh(x)^4 + 8*a*cosh(x)^3*sinh(x) + 12*a*cosh(x)^2*sinh(x)^2 + 8*a*cosh(x)*sinh(x)^3 + 2*a*
sinh(x)^4 + 2*(cosh(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + (6*cosh(x)^2 + 1)*sinh(x)^2 + cosh(x)^2 + 2*(2*co
sh(x)^3 + cosh(x))*sinh(x))*sqrt(a)*sqrt(a*sinh(x)/cosh(x)) - a) + 16*(5*a*cosh(x)^6 + 30*a*cosh(x)*sinh(x)^5
+ 5*a*sinh(x)^6 - a*cosh(x)^4 + (75*a*cosh(x)^2 - a)*sinh(x)^4 + 4*(25*a*cosh(x)^3 - a*cosh(x))*sinh(x)^3 + a*
cosh(x)^2 + (75*a*cosh(x)^4 - 6*a*cosh(x)^2 + a)*sinh(x)^2 + 2*(15*a*cosh(x)^5 - 2*a*cosh(x)^3 + a*cosh(x))*si
nh(x) - 5*a)*sqrt(a*sinh(x)/cosh(x)))/(cosh(x)^6 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6 + 3*(5*cosh(x)^2 + 1)*sinh(
x)^4 + 3*cosh(x)^4 + 4*(5*cosh(x)^3 + 3*cosh(x))*sinh(x)^3 + 3*(5*cosh(x)^4 + 6*cosh(x)^2 + 1)*sinh(x)^2 + 3*c
osh(x)^2 + 6*(cosh(x)^5 + 2*cosh(x)^3 + cosh(x))*sinh(x) + 1)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \tanh ^{3}{\left (x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)**3)**(3/2),x)

[Out]

Integral((a*tanh(x)**3)**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.30995, size = 462, normalized size = 5.37 \begin{align*} -\frac{1}{42} \,{\left (42 \, \sqrt{a} \arctan \left (-\frac{\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}}{\sqrt{a}}\right ) \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 21 \, \sqrt{a} \log \left ({\left | -\sqrt{a} e^{\left (2 \, x\right )} + \sqrt{a e^{\left (4 \, x\right )} - a} \right |}\right ) \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + \frac{16 \,{\left (21 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )}^{6} a \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 42 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )}^{5} a^{\frac{3}{2}} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 119 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )}^{4} a^{2} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 56 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )}^{3} a^{\frac{5}{2}} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 63 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )}^{2} a^{3} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 14 \,{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a}\right )} a^{\frac{7}{2}} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) + 5 \, a^{4} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right )\right )}}{{\left (\sqrt{a} e^{\left (2 \, x\right )} - \sqrt{a e^{\left (4 \, x\right )} - a} + \sqrt{a}\right )}^{7}}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^3)^(3/2),x, algorithm="giac")

[Out]

-1/42*(42*sqrt(a)*arctan(-(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a))/sqrt(a))*sgn(e^(4*x) - 1) + 21*sqrt(a)*log(a
bs(-sqrt(a)*e^(2*x) + sqrt(a*e^(4*x) - a)))*sgn(e^(4*x) - 1) + 16*(21*(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a))^
6*a*sgn(e^(4*x) - 1) + 42*(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a))^5*a^(3/2)*sgn(e^(4*x) - 1) + 119*(sqrt(a)*e^
(2*x) - sqrt(a*e^(4*x) - a))^4*a^2*sgn(e^(4*x) - 1) + 56*(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a))^3*a^(5/2)*sgn
(e^(4*x) - 1) + 63*(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a))^2*a^3*sgn(e^(4*x) - 1) + 14*(sqrt(a)*e^(2*x) - sqrt
(a*e^(4*x) - a))*a^(7/2)*sgn(e^(4*x) - 1) + 5*a^4*sgn(e^(4*x) - 1))/(sqrt(a)*e^(2*x) - sqrt(a*e^(4*x) - a) + s
qrt(a))^7)*a