3.24 \(\int (a \tanh ^2(x))^{3/2} \, dx\)

Optimal. Leaf size=35 \[ a \coth (x) \sqrt{a \tanh ^2(x)} \log (\cosh (x))-\frac{1}{2} a \tanh (x) \sqrt{a \tanh ^2(x)} \]

[Out]

a*Coth[x]*Log[Cosh[x]]*Sqrt[a*Tanh[x]^2] - (a*Tanh[x]*Sqrt[a*Tanh[x]^2])/2

________________________________________________________________________________________

Rubi [A]  time = 0.020685, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {3658, 3473, 3475} \[ a \coth (x) \sqrt{a \tanh ^2(x)} \log (\cosh (x))-\frac{1}{2} a \tanh (x) \sqrt{a \tanh ^2(x)} \]

Antiderivative was successfully verified.

[In]

Int[(a*Tanh[x]^2)^(3/2),x]

[Out]

a*Coth[x]*Log[Cosh[x]]*Sqrt[a*Tanh[x]^2] - (a*Tanh[x]*Sqrt[a*Tanh[x]^2])/2

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \left (a \tanh ^2(x)\right )^{3/2} \, dx &=\left (a \coth (x) \sqrt{a \tanh ^2(x)}\right ) \int \tanh ^3(x) \, dx\\ &=-\frac{1}{2} a \tanh (x) \sqrt{a \tanh ^2(x)}+\left (a \coth (x) \sqrt{a \tanh ^2(x)}\right ) \int \tanh (x) \, dx\\ &=a \coth (x) \log (\cosh (x)) \sqrt{a \tanh ^2(x)}-\frac{1}{2} a \tanh (x) \sqrt{a \tanh ^2(x)}\\ \end{align*}

Mathematica [A]  time = 0.0234227, size = 28, normalized size = 0.8 \[ \frac{1}{2} a \sqrt{a \tanh ^2(x)} (\text{csch}(x) \text{sech}(x)+2 \coth (x) \log (\cosh (x))) \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Tanh[x]^2)^(3/2),x]

[Out]

(a*(2*Coth[x]*Log[Cosh[x]] + Csch[x]*Sech[x])*Sqrt[a*Tanh[x]^2])/2

________________________________________________________________________________________

Maple [A]  time = 0.025, size = 30, normalized size = 0.9 \begin{align*} -{\frac{ \left ( \tanh \left ( x \right ) \right ) ^{2}+\ln \left ( \tanh \left ( x \right ) -1 \right ) +\ln \left ( 1+\tanh \left ( x \right ) \right ) }{2\, \left ( \tanh \left ( x \right ) \right ) ^{3}} \left ( a \left ( \tanh \left ( x \right ) \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*tanh(x)^2)^(3/2),x)

[Out]

-1/2*(a*tanh(x)^2)^(3/2)*(tanh(x)^2+ln(tanh(x)-1)+ln(1+tanh(x)))/tanh(x)^3

________________________________________________________________________________________

Maxima [A]  time = 1.57375, size = 57, normalized size = 1.63 \begin{align*} -a^{\frac{3}{2}} x - a^{\frac{3}{2}} \log \left (e^{\left (-2 \, x\right )} + 1\right ) - \frac{2 \, a^{\frac{3}{2}} e^{\left (-2 \, x\right )}}{2 \, e^{\left (-2 \, x\right )} + e^{\left (-4 \, x\right )} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

-a^(3/2)*x - a^(3/2)*log(e^(-2*x) + 1) - 2*a^(3/2)*e^(-2*x)/(2*e^(-2*x) + e^(-4*x) + 1)

________________________________________________________________________________________

Fricas [B]  time = 2.42579, size = 1368, normalized size = 39.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

-(a*x*cosh(x)^4 + (a*x*e^(2*x) + a*x)*sinh(x)^4 + 4*(a*x*cosh(x)*e^(2*x) + a*x*cosh(x))*sinh(x)^3 + 2*(a*x - a
)*cosh(x)^2 + 2*(3*a*x*cosh(x)^2 + a*x + (3*a*x*cosh(x)^2 + a*x - a)*e^(2*x) - a)*sinh(x)^2 + a*x + (a*x*cosh(
x)^4 + 2*(a*x - a)*cosh(x)^2 + a*x)*e^(2*x) - (a*cosh(x)^4 + (a*e^(2*x) + a)*sinh(x)^4 + 4*(a*cosh(x)*e^(2*x)
+ a*cosh(x))*sinh(x)^3 + 2*a*cosh(x)^2 + 2*(3*a*cosh(x)^2 + (3*a*cosh(x)^2 + a)*e^(2*x) + a)*sinh(x)^2 + (a*co
sh(x)^4 + 2*a*cosh(x)^2 + a)*e^(2*x) + 4*(a*cosh(x)^3 + a*cosh(x) + (a*cosh(x)^3 + a*cosh(x))*e^(2*x))*sinh(x)
 + a)*log(2*cosh(x)/(cosh(x) - sinh(x))) + 4*(a*x*cosh(x)^3 + (a*x - a)*cosh(x) + (a*x*cosh(x)^3 + (a*x - a)*c
osh(x))*e^(2*x))*sinh(x))*sqrt((a*e^(4*x) - 2*a*e^(2*x) + a)/(e^(4*x) + 2*e^(2*x) + 1))/((e^(2*x) - 1)*sinh(x)
^4 - cosh(x)^4 + 4*(cosh(x)*e^(2*x) - cosh(x))*sinh(x)^3 - 2*(3*cosh(x)^2 - (3*cosh(x)^2 + 1)*e^(2*x) + 1)*sin
h(x)^2 - 2*cosh(x)^2 + (cosh(x)^4 + 2*cosh(x)^2 + 1)*e^(2*x) - 4*(cosh(x)^3 - (cosh(x)^3 + cosh(x))*e^(2*x) +
cosh(x))*sinh(x) - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \tanh ^{2}{\left (x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)**2)**(3/2),x)

[Out]

Integral((a*tanh(x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.20896, size = 70, normalized size = 2. \begin{align*} -{\left (x \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) - \log \left (e^{\left (2 \, x\right )} + 1\right ) \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right ) - \frac{2 \, e^{\left (2 \, x\right )} \mathrm{sgn}\left (e^{\left (4 \, x\right )} - 1\right )}{{\left (e^{\left (2 \, x\right )} + 1\right )}^{2}}\right )} a^{\frac{3}{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

-(x*sgn(e^(4*x) - 1) - log(e^(2*x) + 1)*sgn(e^(4*x) - 1) - 2*e^(2*x)*sgn(e^(4*x) - 1)/(e^(2*x) + 1)^2)*a^(3/2)