3.169 \(\int \tanh ^p(a+\log (x)) \, dx\)

Optimal. Leaf size=61 \[ x \left (1-e^{2 a} x^2\right )^{-p} \left (e^{2 a} x^2-1\right )^p F_1\left (\frac{1}{2};-p,p;\frac{3}{2};e^{2 a} x^2,-e^{2 a} x^2\right ) \]

[Out]

(x*(-1 + E^(2*a)*x^2)^p*AppellF1[1/2, -p, p, 3/2, E^(2*a)*x^2, -(E^(2*a)*x^2)])/(1 - E^(2*a)*x^2)^p

________________________________________________________________________________________

Rubi [F]  time = 0.0158417, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \tanh ^p(a+\log (x)) \, dx \]

Verification is Not applicable to the result.

[In]

Int[Tanh[a + Log[x]]^p,x]

[Out]

Defer[Int][Tanh[a + Log[x]]^p, x]

Rubi steps

\begin{align*} \int \tanh ^p(a+\log (x)) \, dx &=\int \tanh ^p(a+\log (x)) \, dx\\ \end{align*}

Mathematica [B]  time = 1.54428, size = 171, normalized size = 2.8 \[ \frac{3 x \left (\frac{e^{2 a} x^2-1}{e^{2 a} x^2+1}\right )^p F_1\left (\frac{1}{2};-p,p;\frac{3}{2};e^{2 a} x^2,-e^{2 a} x^2\right )}{3 F_1\left (\frac{1}{2};-p,p;\frac{3}{2};e^{2 a} x^2,-e^{2 a} x^2\right )-2 e^{2 a} p x^2 \left (F_1\left (\frac{3}{2};1-p,p;\frac{5}{2};e^{2 a} x^2,-e^{2 a} x^2\right )+F_1\left (\frac{3}{2};-p,p+1;\frac{5}{2};e^{2 a} x^2,-e^{2 a} x^2\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tanh[a + Log[x]]^p,x]

[Out]

(3*x*((-1 + E^(2*a)*x^2)/(1 + E^(2*a)*x^2))^p*AppellF1[1/2, -p, p, 3/2, E^(2*a)*x^2, -(E^(2*a)*x^2)])/(3*Appel
lF1[1/2, -p, p, 3/2, E^(2*a)*x^2, -(E^(2*a)*x^2)] - 2*E^(2*a)*p*x^2*(AppellF1[3/2, 1 - p, p, 5/2, E^(2*a)*x^2,
 -(E^(2*a)*x^2)] + AppellF1[3/2, -p, 1 + p, 5/2, E^(2*a)*x^2, -(E^(2*a)*x^2)]))

________________________________________________________________________________________

Maple [F]  time = 0.048, size = 0, normalized size = 0. \begin{align*} \int \left ( \tanh \left ( a+\ln \left ( x \right ) \right ) \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a+ln(x))^p,x)

[Out]

int(tanh(a+ln(x))^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \tanh \left (a + \log \left (x\right )\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+log(x))^p,x, algorithm="maxima")

[Out]

integrate(tanh(a + log(x))^p, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\tanh \left (a + \log \left (x\right )\right )^{p}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+log(x))^p,x, algorithm="fricas")

[Out]

integral(tanh(a + log(x))^p, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \tanh ^{p}{\left (a + \log{\left (x \right )} \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+ln(x))**p,x)

[Out]

Integral(tanh(a + log(x))**p, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \tanh \left (a + \log \left (x\right )\right )^{p}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+log(x))^p,x, algorithm="giac")

[Out]

integrate(tanh(a + log(x))^p, x)