3.147 \(\int x^2 \tanh (a+2 \log (x)) \, dx\)

Optimal. Leaf size=151 \[ -\frac{e^{-3 a/2} \log \left (e^a x^2-\sqrt{2} e^{a/2} x+1\right )}{2 \sqrt{2}}+\frac{e^{-3 a/2} \log \left (e^a x^2+\sqrt{2} e^{a/2} x+1\right )}{2 \sqrt{2}}+\frac{e^{-3 a/2} \tan ^{-1}\left (1-\sqrt{2} e^{a/2} x\right )}{\sqrt{2}}-\frac{e^{-3 a/2} \tan ^{-1}\left (\sqrt{2} e^{a/2} x+1\right )}{\sqrt{2}}+\frac{x^3}{3} \]

[Out]

x^3/3 + ArcTan[1 - Sqrt[2]*E^(a/2)*x]/(Sqrt[2]*E^((3*a)/2)) - ArcTan[1 + Sqrt[2]*E^(a/2)*x]/(Sqrt[2]*E^((3*a)/
2)) - Log[1 - Sqrt[2]*E^(a/2)*x + E^a*x^2]/(2*Sqrt[2]*E^((3*a)/2)) + Log[1 + Sqrt[2]*E^(a/2)*x + E^a*x^2]/(2*S
qrt[2]*E^((3*a)/2))

________________________________________________________________________________________

Rubi [F]  time = 0.0216819, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int x^2 \tanh (a+2 \log (x)) \, dx \]

Verification is Not applicable to the result.

[In]

Int[x^2*Tanh[a + 2*Log[x]],x]

[Out]

Defer[Int][x^2*Tanh[a + 2*Log[x]], x]

Rubi steps

\begin{align*} \int x^2 \tanh (a+2 \log (x)) \, dx &=\int x^2 \tanh (a+2 \log (x)) \, dx\\ \end{align*}

Mathematica [C]  time = 0.251108, size = 64, normalized size = 0.42 \[ \frac{1}{6} \left (3 (\cosh (2 a)-\sinh (2 a)) \text{RootSum}\left [\text{$\#$1}^4 \sinh (a)+\text{$\#$1}^4 \cosh (a)-\sinh (a)+\cosh (a)\& ,\frac{\log (x)-\log (x-\text{$\#$1})}{\text{$\#$1}}\& \right ]+2 x^3\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*Tanh[a + 2*Log[x]],x]

[Out]

(2*x^3 + 3*RootSum[Cosh[a] - Sinh[a] + Cosh[a]*#1^4 + Sinh[a]*#1^4 & , (Log[x] - Log[x - #1])/#1 & ]*(Cosh[2*a
] - Sinh[2*a]))/6

________________________________________________________________________________________

Maple [C]  time = 0.022, size = 37, normalized size = 0.3 \begin{align*}{\frac{{x}^{3}}{3}}-{\frac{{{\rm e}^{-2\,a}}}{2}\sum _{{\it \_R}={\it RootOf} \left ({{\rm e}^{2\,a}}{{\it \_Z}}^{4}+1 \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{{\it \_R}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*tanh(a+2*ln(x)),x)

[Out]

1/3*x^3-1/2*exp(-2*a)*sum(1/_R*ln(x-_R),_R=RootOf(exp(2*a)*_Z^4+1))

________________________________________________________________________________________

Maxima [A]  time = 1.79862, size = 173, normalized size = 1.15 \begin{align*} \frac{1}{3} \, x^{3} - \frac{1}{2} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x e^{a} + \sqrt{2} e^{\left (\frac{1}{2} \, a\right )}\right )} e^{\left (-\frac{1}{2} \, a\right )}\right ) e^{\left (-\frac{3}{2} \, a\right )} - \frac{1}{2} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x e^{a} - \sqrt{2} e^{\left (\frac{1}{2} \, a\right )}\right )} e^{\left (-\frac{1}{2} \, a\right )}\right ) e^{\left (-\frac{3}{2} \, a\right )} + \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (x^{2} e^{a} + \sqrt{2} x e^{\left (\frac{1}{2} \, a\right )} + 1\right ) - \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (x^{2} e^{a} - \sqrt{2} x e^{\left (\frac{1}{2} \, a\right )} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tanh(a+2*log(x)),x, algorithm="maxima")

[Out]

1/3*x^3 - 1/2*sqrt(2)*arctan(1/2*sqrt(2)*(2*x*e^a + sqrt(2)*e^(1/2*a))*e^(-1/2*a))*e^(-3/2*a) - 1/2*sqrt(2)*ar
ctan(1/2*sqrt(2)*(2*x*e^a - sqrt(2)*e^(1/2*a))*e^(-1/2*a))*e^(-3/2*a) + 1/4*sqrt(2)*e^(-3/2*a)*log(x^2*e^a + s
qrt(2)*x*e^(1/2*a) + 1) - 1/4*sqrt(2)*e^(-3/2*a)*log(x^2*e^a - sqrt(2)*x*e^(1/2*a) + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.51188, size = 506, normalized size = 3.35 \begin{align*} \frac{1}{3} \, x^{3} + \sqrt{2} \arctan \left (-\sqrt{2} x e^{\left (\frac{1}{2} \, a\right )} + \sqrt{2} \sqrt{\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}} e^{\left (\frac{1}{2} \, a\right )} - 1\right ) e^{\left (-\frac{3}{2} \, a\right )} + \sqrt{2} \arctan \left (-\sqrt{2} x e^{\left (\frac{1}{2} \, a\right )} + \sqrt{2} \sqrt{-\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}} e^{\left (\frac{1}{2} \, a\right )} + 1\right ) e^{\left (-\frac{3}{2} \, a\right )} + \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) - \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (-\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tanh(a+2*log(x)),x, algorithm="fricas")

[Out]

1/3*x^3 + sqrt(2)*arctan(-sqrt(2)*x*e^(1/2*a) + sqrt(2)*sqrt(sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a))*e^(1/2*a) -
1)*e^(-3/2*a) + sqrt(2)*arctan(-sqrt(2)*x*e^(1/2*a) + sqrt(2)*sqrt(-sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a))*e^(1/
2*a) + 1)*e^(-3/2*a) + 1/4*sqrt(2)*e^(-3/2*a)*log(sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a)) - 1/4*sqrt(2)*e^(-3/2*a
)*log(-sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \tanh{\left (a + 2 \log{\left (x \right )} \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*tanh(a+2*ln(x)),x)

[Out]

Integral(x**2*tanh(a + 2*log(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.2002, size = 166, normalized size = 1.1 \begin{align*} \frac{1}{3} \, x^{3} - \frac{1}{2} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} e^{\left (-\frac{1}{2} \, a\right )} + 2 \, x\right )} e^{\left (\frac{1}{2} \, a\right )}\right ) e^{\left (-\frac{3}{2} \, a\right )} - \frac{1}{2} \, \sqrt{2} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} e^{\left (-\frac{1}{2} \, a\right )} - 2 \, x\right )} e^{\left (\frac{1}{2} \, a\right )}\right ) e^{\left (-\frac{3}{2} \, a\right )} + \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) - \frac{1}{4} \, \sqrt{2} e^{\left (-\frac{3}{2} \, a\right )} \log \left (-\sqrt{2} x e^{\left (-\frac{1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*tanh(a+2*log(x)),x, algorithm="giac")

[Out]

1/3*x^3 - 1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*e^(-1/2*a) + 2*x)*e^(1/2*a))*e^(-3/2*a) - 1/2*sqrt(2)*arctan
(-1/2*sqrt(2)*(sqrt(2)*e^(-1/2*a) - 2*x)*e^(1/2*a))*e^(-3/2*a) + 1/4*sqrt(2)*e^(-3/2*a)*log(sqrt(2)*x*e^(-1/2*
a) + x^2 + e^(-a)) - 1/4*sqrt(2)*e^(-3/2*a)*log(-sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a))