3.83 \(\int \frac{1}{(a+b \cosh (x))^{3/2}} \, dx\)

Optimal. Leaf size=84 \[ -\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}-\frac{2 i \sqrt{a+b \cosh (x)} E\left (\frac{i x}{2}|\frac{2 b}{a+b}\right )}{\left (a^2-b^2\right ) \sqrt{\frac{a+b \cosh (x)}{a+b}}} \]

[Out]

((-2*I)*Sqrt[a + b*Cosh[x]]*EllipticE[(I/2)*x, (2*b)/(a + b)])/((a^2 - b^2)*Sqrt[(a + b*Cosh[x])/(a + b)]) - (
2*b*Sinh[x])/((a^2 - b^2)*Sqrt[a + b*Cosh[x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0570477, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {2664, 21, 2655, 2653} \[ -\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}-\frac{2 i \sqrt{a+b \cosh (x)} E\left (\frac{i x}{2}|\frac{2 b}{a+b}\right )}{\left (a^2-b^2\right ) \sqrt{\frac{a+b \cosh (x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cosh[x])^(-3/2),x]

[Out]

((-2*I)*Sqrt[a + b*Cosh[x]]*EllipticE[(I/2)*x, (2*b)/(a + b)])/((a^2 - b^2)*Sqrt[(a + b*Cosh[x])/(a + b)]) - (
2*b*Sinh[x])/((a^2 - b^2)*Sqrt[a + b*Cosh[x]])

Rule 2664

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^(n +
1))/(d*(n + 1)*(a^2 - b^2)), x] + Dist[1/((n + 1)*(a^2 - b^2)), Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n + 1
) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Integer
Q[2*n]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \cosh (x))^{3/2}} \, dx &=-\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}-\frac{2 \int \frac{-\frac{a}{2}-\frac{1}{2} b \cosh (x)}{\sqrt{a+b \cosh (x)}} \, dx}{a^2-b^2}\\ &=-\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}+\frac{\int \sqrt{a+b \cosh (x)} \, dx}{a^2-b^2}\\ &=-\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}+\frac{\sqrt{a+b \cosh (x)} \int \sqrt{\frac{a}{a+b}+\frac{b \cosh (x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt{\frac{a+b \cosh (x)}{a+b}}}\\ &=-\frac{2 i \sqrt{a+b \cosh (x)} E\left (\frac{i x}{2}|\frac{2 b}{a+b}\right )}{\left (a^2-b^2\right ) \sqrt{\frac{a+b \cosh (x)}{a+b}}}-\frac{2 b \sinh (x)}{\left (a^2-b^2\right ) \sqrt{a+b \cosh (x)}}\\ \end{align*}

Mathematica [A]  time = 0.120197, size = 68, normalized size = 0.81 \[ -\frac{2 \left (b \sinh (x)+i (a+b) \sqrt{\frac{a+b \cosh (x)}{a+b}} E\left (\frac{i x}{2}|\frac{2 b}{a+b}\right )\right )}{(a-b) (a+b) \sqrt{a+b \cosh (x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cosh[x])^(-3/2),x]

[Out]

(-2*(I*(a + b)*Sqrt[(a + b*Cosh[x])/(a + b)]*EllipticE[(I/2)*x, (2*b)/(a + b)] + b*Sinh[x]))/((a - b)*(a + b)*
Sqrt[a + b*Cosh[x]])

________________________________________________________________________________________

Maple [B]  time = 0.079, size = 296, normalized size = 3.5 \begin{align*} 2\,{\frac{1}{ \left ( a+b \right ) \left ( a-b \right ) \sinh \left ( x/2 \right ) \sqrt{2\, \left ( \sinh \left ( x/2 \right ) \right ) ^{2}b+a+b}} \left ( -2\,\sqrt{-2\,{\frac{b}{a-b}}}b\cosh \left ( x/2 \right ) \left ( \sinh \left ( x/2 \right ) \right ) ^{2}+\sqrt{- \left ( \sinh \left ( x/2 \right ) \right ) ^{2}}\sqrt{2\,{\frac{ \left ( \sinh \left ( x/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticF} \left ( \cosh \left ( x/2 \right ) \sqrt{-2\,{\frac{b}{a-b}}},1/2\,\sqrt{-2\,{\frac{a-b}{b}}} \right ) a+\sqrt{- \left ( \sinh \left ( x/2 \right ) \right ) ^{2}}\sqrt{2\,{\frac{ \left ( \sinh \left ( x/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticF} \left ( \cosh \left ( x/2 \right ) \sqrt{-2\,{\frac{b}{a-b}}},1/2\,\sqrt{-2\,{\frac{a-b}{b}}} \right ) b-2\,\sqrt{- \left ( \sinh \left ( x/2 \right ) \right ) ^{2}}\sqrt{2\,{\frac{ \left ( \sinh \left ( x/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticE} \left ( \cosh \left ( x/2 \right ) \sqrt{-2\,{\frac{b}{a-b}}},1/2\,\sqrt{-2\,{\frac{a-b}{b}}} \right ) b \right ){\frac{1}{\sqrt{-2\,{\frac{b}{a-b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cosh(x))^(3/2),x)

[Out]

2*(-2*(-2*b/(a-b))^(1/2)*b*cosh(1/2*x)*sinh(1/2*x)^2+(-sinh(1/2*x)^2)^(1/2)*(2*b/(a-b)*sinh(1/2*x)^2+(a+b)/(a-
b))^(1/2)*EllipticF(cosh(1/2*x)*(-2*b/(a-b))^(1/2),1/2*(-2*(a-b)/b)^(1/2))*a+(-sinh(1/2*x)^2)^(1/2)*(2*b/(a-b)
*sinh(1/2*x)^2+(a+b)/(a-b))^(1/2)*EllipticF(cosh(1/2*x)*(-2*b/(a-b))^(1/2),1/2*(-2*(a-b)/b)^(1/2))*b-2*(-sinh(
1/2*x)^2)^(1/2)*(2*b/(a-b)*sinh(1/2*x)^2+(a+b)/(a-b))^(1/2)*EllipticE(cosh(1/2*x)*(-2*b/(a-b))^(1/2),1/2*(-2*(
a-b)/b)^(1/2))*b)/(-2*b/(a-b))^(1/2)/(a-b)/(a+b)/sinh(1/2*x)/(2*sinh(1/2*x)^2*b+a+b)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cosh \left (x\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cosh(x))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cosh(x) + a)^(-3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cosh \left (x\right ) + a}}{b^{2} \cosh \left (x\right )^{2} + 2 \, a b \cosh \left (x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cosh(x))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cosh(x) + a)/(b^2*cosh(x)^2 + 2*a*b*cosh(x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \cosh{\left (x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cosh(x))**(3/2),x)

[Out]

Integral((a + b*cosh(x))**(-3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cosh \left (x\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cosh(x))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cosh(x) + a)^(-3/2), x)