3.35 \(\int \frac{1}{(1+\cosh (c+d x))^4} \, dx\)

Optimal. Leaf size=93 \[ \frac{2 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)}+\frac{2 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)^2}+\frac{3 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)^3}+\frac{\sinh (c+d x)}{7 d (\cosh (c+d x)+1)^4} \]

[Out]

Sinh[c + d*x]/(7*d*(1 + Cosh[c + d*x])^4) + (3*Sinh[c + d*x])/(35*d*(1 + Cosh[c + d*x])^3) + (2*Sinh[c + d*x])
/(35*d*(1 + Cosh[c + d*x])^2) + (2*Sinh[c + d*x])/(35*d*(1 + Cosh[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0535939, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2650, 2648} \[ \frac{2 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)}+\frac{2 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)^2}+\frac{3 \sinh (c+d x)}{35 d (\cosh (c+d x)+1)^3}+\frac{\sinh (c+d x)}{7 d (\cosh (c+d x)+1)^4} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Cosh[c + d*x])^(-4),x]

[Out]

Sinh[c + d*x]/(7*d*(1 + Cosh[c + d*x])^4) + (3*Sinh[c + d*x])/(35*d*(1 + Cosh[c + d*x])^3) + (2*Sinh[c + d*x])
/(35*d*(1 + Cosh[c + d*x])^2) + (2*Sinh[c + d*x])/(35*d*(1 + Cosh[c + d*x]))

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(1+\cosh (c+d x))^4} \, dx &=\frac{\sinh (c+d x)}{7 d (1+\cosh (c+d x))^4}+\frac{3}{7} \int \frac{1}{(1+\cosh (c+d x))^3} \, dx\\ &=\frac{\sinh (c+d x)}{7 d (1+\cosh (c+d x))^4}+\frac{3 \sinh (c+d x)}{35 d (1+\cosh (c+d x))^3}+\frac{6}{35} \int \frac{1}{(1+\cosh (c+d x))^2} \, dx\\ &=\frac{\sinh (c+d x)}{7 d (1+\cosh (c+d x))^4}+\frac{3 \sinh (c+d x)}{35 d (1+\cosh (c+d x))^3}+\frac{2 \sinh (c+d x)}{35 d (1+\cosh (c+d x))^2}+\frac{2}{35} \int \frac{1}{1+\cosh (c+d x)} \, dx\\ &=\frac{\sinh (c+d x)}{7 d (1+\cosh (c+d x))^4}+\frac{3 \sinh (c+d x)}{35 d (1+\cosh (c+d x))^3}+\frac{2 \sinh (c+d x)}{35 d (1+\cosh (c+d x))^2}+\frac{2 \sinh (c+d x)}{35 d (1+\cosh (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.0770106, size = 54, normalized size = 0.58 \[ \frac{56 \sinh (c+d x)+28 \sinh (2 (c+d x))+8 \sinh (3 (c+d x))+\sinh (4 (c+d x))}{140 d (\cosh (c+d x)+1)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + Cosh[c + d*x])^(-4),x]

[Out]

(56*Sinh[c + d*x] + 28*Sinh[2*(c + d*x)] + 8*Sinh[3*(c + d*x)] + Sinh[4*(c + d*x)])/(140*d*(1 + Cosh[c + d*x])
^4)

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 56, normalized size = 0.6 \begin{align*}{\frac{1}{d} \left ( -{\frac{1}{56} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7}}+{\frac{3}{40} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}-{\frac{1}{8} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+{\frac{1}{8}\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+cosh(d*x+c))^4,x)

[Out]

1/d*(-1/56*tanh(1/2*d*x+1/2*c)^7+3/40*tanh(1/2*d*x+1/2*c)^5-1/8*tanh(1/2*d*x+1/2*c)^3+1/8*tanh(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [B]  time = 1.09567, size = 491, normalized size = 5.28 \begin{align*} \frac{4 \, e^{\left (-d x - c\right )}}{5 \, d{\left (7 \, e^{\left (-d x - c\right )} + 21 \, e^{\left (-2 \, d x - 2 \, c\right )} + 35 \, e^{\left (-3 \, d x - 3 \, c\right )} + 35 \, e^{\left (-4 \, d x - 4 \, c\right )} + 21 \, e^{\left (-5 \, d x - 5 \, c\right )} + 7 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-7 \, d x - 7 \, c\right )} + 1\right )}} + \frac{12 \, e^{\left (-2 \, d x - 2 \, c\right )}}{5 \, d{\left (7 \, e^{\left (-d x - c\right )} + 21 \, e^{\left (-2 \, d x - 2 \, c\right )} + 35 \, e^{\left (-3 \, d x - 3 \, c\right )} + 35 \, e^{\left (-4 \, d x - 4 \, c\right )} + 21 \, e^{\left (-5 \, d x - 5 \, c\right )} + 7 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-7 \, d x - 7 \, c\right )} + 1\right )}} + \frac{4 \, e^{\left (-3 \, d x - 3 \, c\right )}}{d{\left (7 \, e^{\left (-d x - c\right )} + 21 \, e^{\left (-2 \, d x - 2 \, c\right )} + 35 \, e^{\left (-3 \, d x - 3 \, c\right )} + 35 \, e^{\left (-4 \, d x - 4 \, c\right )} + 21 \, e^{\left (-5 \, d x - 5 \, c\right )} + 7 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-7 \, d x - 7 \, c\right )} + 1\right )}} + \frac{4}{35 \, d{\left (7 \, e^{\left (-d x - c\right )} + 21 \, e^{\left (-2 \, d x - 2 \, c\right )} + 35 \, e^{\left (-3 \, d x - 3 \, c\right )} + 35 \, e^{\left (-4 \, d x - 4 \, c\right )} + 21 \, e^{\left (-5 \, d x - 5 \, c\right )} + 7 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-7 \, d x - 7 \, c\right )} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+cosh(d*x+c))^4,x, algorithm="maxima")

[Out]

4/5*e^(-d*x - c)/(d*(7*e^(-d*x - c) + 21*e^(-2*d*x - 2*c) + 35*e^(-3*d*x - 3*c) + 35*e^(-4*d*x - 4*c) + 21*e^(
-5*d*x - 5*c) + 7*e^(-6*d*x - 6*c) + e^(-7*d*x - 7*c) + 1)) + 12/5*e^(-2*d*x - 2*c)/(d*(7*e^(-d*x - c) + 21*e^
(-2*d*x - 2*c) + 35*e^(-3*d*x - 3*c) + 35*e^(-4*d*x - 4*c) + 21*e^(-5*d*x - 5*c) + 7*e^(-6*d*x - 6*c) + e^(-7*
d*x - 7*c) + 1)) + 4*e^(-3*d*x - 3*c)/(d*(7*e^(-d*x - c) + 21*e^(-2*d*x - 2*c) + 35*e^(-3*d*x - 3*c) + 35*e^(-
4*d*x - 4*c) + 21*e^(-5*d*x - 5*c) + 7*e^(-6*d*x - 6*c) + e^(-7*d*x - 7*c) + 1)) + 4/35/(d*(7*e^(-d*x - c) + 2
1*e^(-2*d*x - 2*c) + 35*e^(-3*d*x - 3*c) + 35*e^(-4*d*x - 4*c) + 21*e^(-5*d*x - 5*c) + 7*e^(-6*d*x - 6*c) + e^
(-7*d*x - 7*c) + 1))

________________________________________________________________________________________

Fricas [B]  time = 1.7497, size = 984, normalized size = 10.58 \begin{align*} -\frac{4 \,{\left (35 \, \cosh \left (d x + c\right )^{2} + 10 \,{\left (7 \, \cosh \left (d x + c\right ) + 2\right )} \sinh \left (d x + c\right ) + 35 \, \sinh \left (d x + c\right )^{2} + 22 \, \cosh \left (d x + c\right ) + 7\right )}}{35 \,{\left (d \cosh \left (d x + c\right )^{6} + d \sinh \left (d x + c\right )^{6} + 7 \, d \cosh \left (d x + c\right )^{5} +{\left (6 \, d \cosh \left (d x + c\right ) + 7 \, d\right )} \sinh \left (d x + c\right )^{5} + 21 \, d \cosh \left (d x + c\right )^{4} +{\left (15 \, d \cosh \left (d x + c\right )^{2} + 35 \, d \cosh \left (d x + c\right ) + 21 \, d\right )} \sinh \left (d x + c\right )^{4} + 35 \, d \cosh \left (d x + c\right )^{3} +{\left (20 \, d \cosh \left (d x + c\right )^{3} + 70 \, d \cosh \left (d x + c\right )^{2} + 84 \, d \cosh \left (d x + c\right ) + 35 \, d\right )} \sinh \left (d x + c\right )^{3} + 35 \, d \cosh \left (d x + c\right )^{2} +{\left (15 \, d \cosh \left (d x + c\right )^{4} + 70 \, d \cosh \left (d x + c\right )^{3} + 126 \, d \cosh \left (d x + c\right )^{2} + 105 \, d \cosh \left (d x + c\right ) + 35 \, d\right )} \sinh \left (d x + c\right )^{2} + 22 \, d \cosh \left (d x + c\right ) +{\left (6 \, d \cosh \left (d x + c\right )^{5} + 35 \, d \cosh \left (d x + c\right )^{4} + 84 \, d \cosh \left (d x + c\right )^{3} + 105 \, d \cosh \left (d x + c\right )^{2} + 70 \, d \cosh \left (d x + c\right ) + 20 \, d\right )} \sinh \left (d x + c\right ) + 7 \, d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+cosh(d*x+c))^4,x, algorithm="fricas")

[Out]

-4/35*(35*cosh(d*x + c)^2 + 10*(7*cosh(d*x + c) + 2)*sinh(d*x + c) + 35*sinh(d*x + c)^2 + 22*cosh(d*x + c) + 7
)/(d*cosh(d*x + c)^6 + d*sinh(d*x + c)^6 + 7*d*cosh(d*x + c)^5 + (6*d*cosh(d*x + c) + 7*d)*sinh(d*x + c)^5 + 2
1*d*cosh(d*x + c)^4 + (15*d*cosh(d*x + c)^2 + 35*d*cosh(d*x + c) + 21*d)*sinh(d*x + c)^4 + 35*d*cosh(d*x + c)^
3 + (20*d*cosh(d*x + c)^3 + 70*d*cosh(d*x + c)^2 + 84*d*cosh(d*x + c) + 35*d)*sinh(d*x + c)^3 + 35*d*cosh(d*x
+ c)^2 + (15*d*cosh(d*x + c)^4 + 70*d*cosh(d*x + c)^3 + 126*d*cosh(d*x + c)^2 + 105*d*cosh(d*x + c) + 35*d)*si
nh(d*x + c)^2 + 22*d*cosh(d*x + c) + (6*d*cosh(d*x + c)^5 + 35*d*cosh(d*x + c)^4 + 84*d*cosh(d*x + c)^3 + 105*
d*cosh(d*x + c)^2 + 70*d*cosh(d*x + c) + 20*d)*sinh(d*x + c) + 7*d)

________________________________________________________________________________________

Sympy [A]  time = 9.11852, size = 68, normalized size = 0.73 \begin{align*} \begin{cases} - \frac{\tanh ^{7}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{56 d} + \frac{3 \tanh ^{5}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{40 d} - \frac{\tanh ^{3}{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{8 d} + \frac{\tanh{\left (\frac{c}{2} + \frac{d x}{2} \right )}}{8 d} & \text{for}\: d \neq 0 \\\frac{x}{\left (\cosh{\left (c \right )} + 1\right )^{4}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+cosh(d*x+c))**4,x)

[Out]

Piecewise((-tanh(c/2 + d*x/2)**7/(56*d) + 3*tanh(c/2 + d*x/2)**5/(40*d) - tanh(c/2 + d*x/2)**3/(8*d) + tanh(c/
2 + d*x/2)/(8*d), Ne(d, 0)), (x/(cosh(c) + 1)**4, True))

________________________________________________________________________________________

Giac [A]  time = 1.17115, size = 63, normalized size = 0.68 \begin{align*} -\frac{4 \,{\left (35 \, e^{\left (3 \, d x + 3 \, c\right )} + 21 \, e^{\left (2 \, d x + 2 \, c\right )} + 7 \, e^{\left (d x + c\right )} + 1\right )}}{35 \, d{\left (e^{\left (d x + c\right )} + 1\right )}^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+cosh(d*x+c))^4,x, algorithm="giac")

[Out]

-4/35*(35*e^(3*d*x + 3*c) + 21*e^(2*d*x + 2*c) + 7*e^(d*x + c) + 1)/(d*(e^(d*x + c) + 1)^7)