3.8 \(\int \sinh ^{\frac{5}{2}}(a+b x) \, dx\)

Optimal. Leaf size=80 \[ \frac{2 \sinh ^{\frac{3}{2}}(a+b x) \cosh (a+b x)}{5 b}+\frac{6 i \sqrt{\sinh (a+b x)} E\left (\left .\frac{1}{2} \left (i a+i b x-\frac{\pi }{2}\right )\right |2\right )}{5 b \sqrt{i \sinh (a+b x)}} \]

[Out]

(((6*I)/5)*EllipticE[(I*a - Pi/2 + I*b*x)/2, 2]*Sqrt[Sinh[a + b*x]])/(b*Sqrt[I*Sinh[a + b*x]]) + (2*Cosh[a + b
*x]*Sinh[a + b*x]^(3/2))/(5*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0320144, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {2635, 2640, 2639} \[ \frac{2 \sinh ^{\frac{3}{2}}(a+b x) \cosh (a+b x)}{5 b}+\frac{6 i \sqrt{\sinh (a+b x)} E\left (\left .\frac{1}{2} \left (i a+i b x-\frac{\pi }{2}\right )\right |2\right )}{5 b \sqrt{i \sinh (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sinh[a + b*x]^(5/2),x]

[Out]

(((6*I)/5)*EllipticE[(I*a - Pi/2 + I*b*x)/2, 2]*Sqrt[Sinh[a + b*x]])/(b*Sqrt[I*Sinh[a + b*x]]) + (2*Cosh[a + b
*x]*Sinh[a + b*x]^(3/2))/(5*b)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sinh ^{\frac{5}{2}}(a+b x) \, dx &=\frac{2 \cosh (a+b x) \sinh ^{\frac{3}{2}}(a+b x)}{5 b}-\frac{3}{5} \int \sqrt{\sinh (a+b x)} \, dx\\ &=\frac{2 \cosh (a+b x) \sinh ^{\frac{3}{2}}(a+b x)}{5 b}-\frac{\left (3 \sqrt{\sinh (a+b x)}\right ) \int \sqrt{i \sinh (a+b x)} \, dx}{5 \sqrt{i \sinh (a+b x)}}\\ &=\frac{6 i E\left (\left .\frac{1}{2} \left (i a-\frac{\pi }{2}+i b x\right )\right |2\right ) \sqrt{\sinh (a+b x)}}{5 b \sqrt{i \sinh (a+b x)}}+\frac{2 \cosh (a+b x) \sinh ^{\frac{3}{2}}(a+b x)}{5 b}\\ \end{align*}

Mathematica [A]  time = 0.0733094, size = 68, normalized size = 0.85 \[ \frac{\sinh (a+b x) \sinh (2 (a+b x))-6 \sqrt{i \sinh (a+b x)} E\left (\left .\frac{1}{4} (-2 i a-2 i b x+\pi )\right |2\right )}{5 b \sqrt{\sinh (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sinh[a + b*x]^(5/2),x]

[Out]

(-6*EllipticE[((-2*I)*a + Pi - (2*I)*b*x)/4, 2]*Sqrt[I*Sinh[a + b*x]] + Sinh[a + b*x]*Sinh[2*(a + b*x)])/(5*b*
Sqrt[Sinh[a + b*x]])

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 164, normalized size = 2.1 \begin{align*}{\frac{1}{b\cosh \left ( bx+a \right ) } \left ( -{\frac{6\,\sqrt{2}}{5}\sqrt{1-i\sinh \left ( bx+a \right ) }\sqrt{1+i\sinh \left ( bx+a \right ) }\sqrt{i\sinh \left ( bx+a \right ) }{\it EllipticE} \left ( \sqrt{1-i\sinh \left ( bx+a \right ) },{\frac{\sqrt{2}}{2}} \right ) }+{\frac{3\,\sqrt{2}}{5}\sqrt{1-i\sinh \left ( bx+a \right ) }\sqrt{1+i\sinh \left ( bx+a \right ) }\sqrt{i\sinh \left ( bx+a \right ) }{\it EllipticF} \left ( \sqrt{1-i\sinh \left ( bx+a \right ) },{\frac{\sqrt{2}}{2}} \right ) }+{\frac{2\, \left ( \cosh \left ( bx+a \right ) \right ) ^{4}}{5}}-{\frac{2\, \left ( \cosh \left ( bx+a \right ) \right ) ^{2}}{5}} \right ){\frac{1}{\sqrt{\sinh \left ( bx+a \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(b*x+a)^(5/2),x)

[Out]

(-6/5*(1-I*sinh(b*x+a))^(1/2)*2^(1/2)*(1+I*sinh(b*x+a))^(1/2)*(I*sinh(b*x+a))^(1/2)*EllipticE((1-I*sinh(b*x+a)
)^(1/2),1/2*2^(1/2))+3/5*(1-I*sinh(b*x+a))^(1/2)*2^(1/2)*(1+I*sinh(b*x+a))^(1/2)*(I*sinh(b*x+a))^(1/2)*Ellipti
cF((1-I*sinh(b*x+a))^(1/2),1/2*2^(1/2))+2/5*cosh(b*x+a)^4-2/5*cosh(b*x+a)^2)/cosh(b*x+a)/sinh(b*x+a)^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sinh \left (b x + a\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(sinh(b*x + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sinh \left (b x + a\right )^{\frac{5}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

integral(sinh(b*x + a)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sinh \left (b x + a\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(b*x+a)^(5/2),x, algorithm="giac")

[Out]

integrate(sinh(b*x + a)^(5/2), x)